

Readiness Quiz: MXN 441- Advanced Statistical Machine Learning, S1, 2026

Q1. Which of the following best describes a vector dot product $\mathbf{a} \cdot \mathbf{b}$?

- A) The product of the lengths of two vectors
- B) The matrix obtained from multiplying \mathbf{a} and \mathbf{b}
- C) A scalar value representing the projection of one vector onto another
- D) The determinant of the two vectors

Answer: C

The dot product returns a scalar and measures how much one vector goes in the direction of another.

Q2. Which of the following expressions gives the least-squares solution $\hat{\beta}$ in linear regression, assuming \mathbf{X} is the design matrix and \mathbf{y} is the response vector?

- A) $\hat{\beta} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\mathbf{y}$
- B) $\hat{\beta} = \mathbf{X}^{-1}\mathbf{y}$
- C) $\hat{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$
- D) $\hat{\beta} = \mathbf{X}\mathbf{y}$

Answer: C

This is the standard normal equation for ordinary least squares (OLS):

$$\hat{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Q3. Which of the following Python code snippets correctly calculates the mean of a list of numbers?

- A) `mean(numbers)`
- B) `sum(numbers) / len(numbers)`
- C) `np.average(numbers)`
- D) Both B and C

Answer: D

Option B is the manual way, and option C uses NumPy.

Q4. You are given a dataset with 10,000 rows and 50 columns. Which of the following is NOT a typical preprocessing step?

- A) Handling missing values
- B) Normalizing numeric features
- C) Sorting the dataset alphabetically
- D) Encoding categorical variables

Answer: C

Sorting alphabetically is not usually meaningful for modeling. The others are common preprocessing steps.

Q5. What does the p-value represent in hypothesis testing?

- A) The probability that the null hypothesis is true
- B) The probability of observing your data if the null hypothesis were true
- C) The effect size of your experiment
- D) The significance level of the test

Answer: B

The p-value measures how likely your data is under the assumption that the null hypothesis is true it does **not** tell you the probability that the null itself is true.

Q6. Which of the following best describes the bias-variance tradeoff in machine learning?

- A) Increasing model complexity reduces both bias and variance.
- B) High bias models usually overfit the data.
- C) High variance models are likely to underfit the data.
- D) Reducing bias usually increases variance and vice versa.

Answer: D

There is a fundamental trade-off: simpler models tend to have high bias and low variance (underfitting), while complex models tend to have low bias and high variance (overfitting). Good generalization requires balancing these two.