Readiness quiz

Problems

1. Determine whether the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{3+i^n}$$
.
(b) $\sum_{n=1}^{\infty} \frac{(1+2in)^n}{3n^n}$
(c) $\sum_{n=1}^{\infty} \frac{5i^n}{2i-n^2}$.

- 2. Verify or disprove "There exist nonreal complex numbers z for which $|\exp(z)| = \exp(z)$."
- 3. We denote by Log(z) the principal branch of the complex logarithm function, which we denote as $\log(z)$. Evaluate $\log(z)$ and Log(z), for

(a)
$$z = 1$$
, (b) $z = 2e^{i\frac{2\pi}{3}}$, (c) $z = 4 + 4i$, (d) $z = -2e^{2+i\frac{2\pi}{11}}$.

4. Let γ be the path that begins with the straight line segment from 1 to -1 and returns to 1 along a circular arc in the lower half plane, centred at 0. Evaluate the path integral

$$\int_{\gamma} \bar{z} \, \mathrm{d}z.$$

5. Evaluate the integral

$$\int_C \frac{z}{3-\mathbf{i}} + \frac{3+\mathbf{i}}{z-2} \,\mathrm{d}z$$

where C is a simple closed positively oriented path which does not pass through z = 2.

6. Classify the finite isolated singularities. If you find a removable singularity, then redefine the function to make it analytic there. If you find a pole, then state its order. $f_3(z) = \frac{e^z \sin(z)}{z^5 - \pi^4 z}$.

7. Use Jordan's lemma to evaluate the improper integral $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} \, \mathrm{d}x.$

8. Let $U(x) = x - x^2$. Find the solution of

$$\partial_t u(x,t) = \partial_{xx} u(x,t) \qquad (x,t) \in (0,1) \times (0,\infty), \qquad (1.\text{PDE})$$

$$u(x,0) = U(x)$$
 $x \in [0,1],$ (1.IC)

$$u(0,t) = 0 = u(1,t)$$
 $t \in [0,\infty).$ (1.BC)

In this problem, you should use separation of variables, solution of a Sturm-Liouville problem, and the principle of linear superposition. You should calculate the coefficients explicitly.

9. Using Cramer's rule, solve

$$\begin{pmatrix} \lambda & \mathrm{e}^{\mathrm{i}\lambda} \\ \lambda & \mathrm{e}^{-\mathrm{i}\lambda} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix},$$

for x and y as functions of λ . For what values of $\lambda \in \mathbb{C}$ is this possible?

Solutions

1. (a) The terms in this series form the cyclic sequence

$$\frac{1}{3+i}, \frac{1}{2}, \frac{1}{3-i}, \frac{1}{4}, \dots$$

Because this sequence does not have limit 0, the series diverges.

(b) This is the series $\frac{1}{3} \sum_{n=1}^{\infty} b_n^n$ for $b_n = (1 + 2in)/n$, and

$$|b_n| = \frac{\sqrt{1+4n^2}}{n} = \sqrt{\frac{1}{n^2}+4} \to 2 > 1.$$

Therefore, by the root test, the original series diverges.

(c) This is the series $\sum_{n=1}^{\infty} a_n$ for $a_n = 5i^n/(2i - n^2)$. But, for $n \ge 2$

$$|a_n| \leqslant \frac{5}{(n-1)^2},$$

and the series $\sum_{n=2}^{\infty} \frac{5}{(n-1)^2}$ converges to $5\pi^2/6$. Hence, by the comparison test, the original series converges.

Note: Evaluating the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is known as the *Basel problem*. The solution can be found in several ways; you are not expected to know any proof.

2. This is true. Let $z = x + i2k\pi$ for any $x \in \mathbb{R}$ and $k \in \mathbb{Z}$. Then, because $\exp(i2k\pi) = 1$, it follows that

$$|\exp(z)| = \exp(\operatorname{Re}(x + i2k\pi)) = \exp(x) = \exp(x) \exp(i2k\pi) = \exp(z).$$

- 3. In each answer, we provide the set of values $\log(z)$ takes, parametrized by $k \in \mathbb{Z}$. The principal value, $\log(z)$, is the value corresponding to k = 0.
 - (a) $2k\pi i$.
 - (b) $\ln(2) + i\left(\frac{2\pi}{3} + 2k\pi\right)$.
 - (c) $5\ln(2) + i(\frac{\pi}{4} + 2k\pi)$.
 - (d) $2 + \ln(2) + i\left(\frac{-9\pi}{11} + 2k\pi\right).$
- 4. For z on the unit circle, $\bar{z} = 1/z$. Hence, if $z = \exp(it)$, then $\bar{z} = \exp(-it)$. However, on the real line $\bar{z} = z$. We calculate

$$\int_{\gamma} \bar{z} \, dz = \int_{0}^{2} 1 - t \, dt + \int_{-\pi}^{0} \exp(-it) i \exp(it) \, dt$$
$$= \left[t - \frac{t^{2}}{2} \right]_{0}^{2} + i \left[t \right]_{-\pi}^{0}$$
$$= 2 - 2 - 0 + 0 + i(0 + \pi) = i\pi.$$

5. The first term is entire, so the integral is equal to

$$(3+\mathrm{i})\int_C \frac{1}{z-2}\,\mathrm{d}z.$$

If C encloses z = 2, then, as it is a loop about a simple pole, the integral evaluates to $(3 - i)2\pi i$. If C does not enclose z = 2, then, by Cauchy's theorem, the integral evaluates to 0. 6. We factorize the denominator

$$f_3(z) = \frac{e^z \sin(z)}{(z - i\pi)(z + i\pi)z(z - \pi)(z + \pi)}.$$

The numerator and denominator are both entire functions, so the only points of nonanlyticity are zeros of the denominator. The denominator is a polynomial, so all its zeros correspond to isolated singularities of f_3 .

At each of $z = \pm i\pi$, the numerator is nonzero and the denominator has a zero of order 1, so f_3 has a pole of order 1.

At each of $z = 0, \pi, -\pi$, both the denominator and the numerator have zeros of order 1, so these correspond to removable singularities of f_3 . Indeed, we may redefine f_3 as

$$f_3(z) = \begin{cases} \frac{-1}{\pi^4} & \text{if } z = 0, \\ \frac{-e^{\pi}}{4\pi^4} & \text{if } z = \pi, \\ \frac{e^{-\pi}}{4\pi^4} & \text{if } z = -\pi, \\ \frac{e^z \sin(z)}{z^5 - \pi^4 z} & \text{otherwise,} \end{cases}$$

to remove those singularities. In doing this, we have used the Taylor series for $\sin(z)$ to obtain limits

$$\lim_{z \to 0} \frac{\sin z}{z} = 1, \qquad \qquad \lim_{z \to \pi} \frac{\sin(z-\pi)}{z-\pi} = -1, \qquad \qquad \lim_{z \to -\pi} \frac{\sin(z+\pi)}{z+\pi} = -1.$$

7. The integrand is dominated by $1/(x^2+1)^2$, so the improper integral converges. Hence it is equal to its Cauchy principal value, which is equal to

$$\operatorname{Re}\left(\operatorname{VP}\int_{-\infty}^{\infty}\frac{\mathrm{e}^{\mathrm{i}x}}{(x^2+1)^2}\,\mathrm{d}x\right).$$

For R > 0, let σ_R be the semicircular path in the upper half plane, centred at 0 with radius R, extending from R to -R. Let γ_R be the straight line path extending from -R to R along the real axis. By Cauchy's theorem and a residue calculation, provided R > 1,

$$\int_{[\gamma_R,\sigma_R]} \frac{e^{iz}}{(z^2+1)^2} dz = 2\pi i \operatorname{Res}_{z=i} \left(\frac{e^{iz}}{(z^2+1)^2} \right)$$
$$= 2\pi i \lim_{z \to i} \left(\frac{d}{dz} \left[\frac{e^{iz}}{(z+i)^2} \right] \right)$$
$$= 2\pi i \lim_{z \to i} \left(\frac{(z+i)^2 i e^{iz} - e^{iz} (2z+2i)}{(z+i)^4} \right)$$
$$= 2\pi i \lim_{z \to i} \left(\frac{-4i e^{-1} - e^{-1} 4i}{16} \right) = \frac{\pi}{e}.$$

By Jordan's lemma,

$$\lim_{R \to \infty} \int_{\sigma_R} \frac{\mathrm{e}^{\mathrm{i}z}}{(z^2 + 1)^2} \,\mathrm{d}z = 0.$$

Hence

$$\frac{\pi}{e} = \lim_{R \to \infty} \int_{\gamma_R} \frac{e^{iz}}{(z^2 + 1)^2} \, dz = VP \int_{-\infty}^{\infty} \frac{e^{ix}}{(x^2 + 1)^2} \, dx.$$

Because this integral is equal to its own real part, the original integral is equal to π/e .

8. Suppose initially that u(x,t) = X(x)T(t), for some functions X and T to be determined. Then equation (1.PDE) implies that

$$XT' = X''T \qquad \Rightarrow \qquad \frac{T'}{T} = \frac{X''}{X}.$$

Now the left side is a function of t only, so it cannot change when x changes, and the right side depends only on x so it is independent of t. Therefore, both sides of this equation must be constant. We shall call that constant $-\lambda$. Hence we obtain ODE

$$T'(t) = -\lambda T(t)$$
 and $X''(x) = -\lambda X(x)$.

Under our separation assumption, equations (1.BC) reduce to X(0) = 0 = X(1). Combining these with the ODE for X, we obtain a Sturm-Liouville problem, which we shall solve next.

The X ODE has solutions

$$X(x) = \begin{cases} A + Bx & \text{if } 0 = \lambda, \\ A\cosh(kx) + B\sinh(kx) & \text{if } 0 > \lambda = -k^2; \ k > 0, \\ A\cos(kx) + B\sin(kx) & \text{if } 0 < \lambda = k^2; \ k > 0, \end{cases}$$

in each of which the constants A and B are free. In the first case, X(0) = 0 implies that A = 0, and X(1) = 0 then implies that B = 0, so $0 = \lambda$ yields no nontrivial solutions. In the second case, X(0) = 0 implies that A = 0, and, knowing that k > 0, X(1) = 0 then implies that B = 0, so $0 > \lambda$ yields no nontrivial solutions. In the third case, X(0) = 0 implies that A = 0, and X(1) = 0 then implies that k is a positive integer multiple of π . Therefore, the solutions of the Sturm-Liouville problem are

eigenfunctions
$$X_n(x) = \sin(n\pi x)$$
 and eigenvalues $\lambda_n = n^2 \pi^2$, for $n \in \mathbb{N}$.

Corresponding to each λ_n , the ODE for T has solution $T(t) = e^{-\lambda_n t} = e^{-n^2 \pi^2 t}$. Therefore, the separated solutions of equation (1.PDE) are $u(x,t) = \sin(n\pi x)e^{-n^2\pi^2 t}$, for positive integers n. However, none of these separated solutions evaluates to U(x) at t = 0, so we must now abandon our original separation assumption.

Using the principle of linear superposition, any linear combination of the separated solutions also satisfies equation (1.PDE) and equations (1.BC). Therefore, we seek a solution of the full problem in the form

$$u(x,t) = \sum_{n=1}^{\infty} B_n \sin(n\pi x) e^{-n^2 \pi^2 t},$$

for coefficients B_n to be determined. Evaluating at t = 0 and applying equation (1.IC), we obtain

$$x - x^{2} = U(x) = u(x, 0) = \sum_{n=1}^{\infty} B_{n} \sin(n\pi x) e^{-n^{2}\pi^{2}0} = \sum_{n=1}^{\infty} B_{n} \sin(n\pi x).$$

For each positive integer m, we take the inner product of both sides of this equation against the function $\sin(m\pi x)$, and use the orthogonality property of these sine functions to determine

$$\int_{0}^{1} (x - x^{2}) \sin(m\pi x) \, \mathrm{d}x = \int_{0}^{1} \sum_{n=1}^{\infty} B_{n} \sin(n\pi x) \sin(m\pi x) \, \mathrm{d}x$$
$$= \sum_{n=1}^{\infty} B_{n} \int_{0}^{1} \sin(n\pi x) \sin(m\pi x) \, \mathrm{d}x$$
$$= \sum_{n=1}^{\infty} B_{n} \frac{\delta_{m,n}}{2} = \frac{B_{m}}{2}.$$

Hence, integrating by parts thrice,

$$B_m = 2 \int_0^1 (x - x^2) \sin(m\pi x) dx$$

= $\left[-(x - x^2) \frac{\cos(m\pi x)}{m\pi} + (1 - 2x) \frac{\sin(m\pi x)}{m^2 \pi^2} - 2 \frac{\cos(m\pi x)}{m^3 \pi^3} \right]_{x=0}^{x=1}$
= $(0 - 0) + (0 - 0) - \frac{2}{m^3 \pi^3} (\cos(m\pi) - 1))$
= $\begin{cases} \frac{4}{m^3 \pi^3} & \text{if } m \text{ is odd,} \\ 0 & \text{if } m \text{ is even.} \end{cases}$

Therefore,

$$u(x,t) = \sum_{j=1}^{\infty} \frac{4}{[2j-1]^3 \pi^3} \sin([2j-1]\pi x) e^{-[2j-1]^2 \pi^2 t}.$$

9. By Cramer's rule, the solution is given by

$$\begin{aligned} x(\lambda) &= \frac{\det \begin{pmatrix} 3 & e^{i\lambda} \\ -1 & e^{-i\lambda} \end{pmatrix}}{\det \begin{pmatrix} \lambda & e^{i\lambda} \\ \lambda & e^{-i\lambda} \end{pmatrix}} = \frac{3e^{-i\lambda} + e^{i\lambda}}{\lambda (e^{-i\lambda} - e^{i\lambda})} = \frac{e^{-i\lambda} + \cos(\lambda)}{-i\lambda \sin(\lambda)}, \\ y(\lambda) &= \frac{\det \begin{pmatrix} \lambda & 3 \\ \lambda & -1 \end{pmatrix}}{\det \begin{pmatrix} \lambda & e^{i\lambda} \\ \lambda & e^{-i\lambda} \end{pmatrix}} = \frac{-\lambda - 3\lambda}{\lambda (e^{-i\lambda} - e^{i\lambda})} = \frac{2}{i\sin(\lambda)}, \end{aligned}$$

wherever it exists. The solution exists if and only if the system is nondegenerate, that is if and only if the determinant of the linear system is nonzero, i.e. when

$$0 \neq \det \begin{pmatrix} \lambda & e^{i\lambda} \\ \lambda & e^{-i\lambda} \end{pmatrix} = -2i\lambda\sin(\lambda),$$

so when λ is not an integer multiple of π .