ACE Algebraic Number Theory - Pre-Quiz

Questions

1. Determine the unit group of the ring $\mathbb{Z} / 12 \mathbb{Z}$ of integers modulo 12 .
2. Let R be a commutative ring with identity. Explain why every maximal ideal in R is prime. Is the converse true?
3. Show that the rings $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$ and \mathbb{C} are isomorphic.

Solutions

1. An element $[x] \in \mathbb{Z} / 12 \mathbb{Z}$ is invertible iff $\operatorname{gcd}(x, 12)=1$. Thus the set of units is $U=$ $\{[1],[5],[7],[11]\}$. To understand the group structure of U, notice that

$$
5^{2} \equiv 7^{2} \equiv 11^{2} \equiv 1 \bmod 12
$$

Thus every element of U is its own inverse. The only four element group with this property is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2. Let $M \subset R$ be a maximal ideal. Then R / M is a field, which is thus also an integral domain, which implies that M is a prime ideal.
The converse is false, however, since $\{0\} \subset R$ is a prime ideal which is not maximal.
3. Consider the map $e: \mathbb{R}[x] \rightarrow \mathbb{C}, e: f(x) \mapsto f(i) \in \mathbb{C}$, which evaluates polynomials at i. It is easy to see that this map is a ring homomorphism and is surjective. It thus remains to show that ker $e=\left\langle x^{2}+1\right\rangle$ and then the result follows from the First Isomorphism Theorem.

To show ker $e=\left\langle x^{2}+1\right\rangle$, we note that the minimal polynomial of i over \mathbb{R} is $x^{2}+1$, and so any polynomial $f(x) \in \mathbb{R}[x]$ has root i iff f is divisible by $x^{2}+1$.
For those not familiar with minimial polynomials, we can also show this directly.
First, if $f(x) \in\left\langle x^{2}+1\right\rangle$, then clearly $f(i)=0$, so $f \in \operatorname{ker} e$.
Conversely, suppose that $f \in \operatorname{ker} e$, so $f(i)=0$. Now since the coefficients of f are real, it follows that

$$
0=\overline{0}=\overline{f(i)}=\bar{f}(\bar{i})=f(-i),
$$

where ${ }^{-}$denotes complex conjugation. So $f(x)$ is divisible by both $x-i$ and $x+i$ in $\mathbb{C}[x]$. Hence $f(x)$ is divisible by $(x-i)(x+i)=x^{2}+1$, which means that $f(x) \in\left\langle x^{2}+1\right\rangle$, as required.

