

ACE Network Subject Information Guide

MATH4031: Algebra – Permutation groups

Semester 1, 2023

Administration and contact details

Host department	Mathematics and Statistics
Host institution	The University of Western Australia
Name of lecturer	Michael Giudici
Phone number	0400902986
Email address	Michael.giudici@uwa.edu.au
Homepage	https://research-repository.uwa.edu.au/en/persons/michael-giudici
Name of honours coordinator	Alice Devillers
Phone number	(08) 64883228
Email address	Alice.devillers@uwa.edu.au
Name of masters coordinator	N/A
Phone number	
Email address	

Subject details

Handbook entry URL	https://handbooks.uwa.edu.au/unitdetails?code=math4031
Subject homepage URL	
Honours student hand-out URL	
Teaching period (start and end date):	27 th Feb – 26 th May
Exam period (start and end date):	3 rd June – 16 th June
Contact hours per week:	3
ACE enrolment closure date:	27 th Feb
Lecture day(s) and time(s):	TBA – finalised week before semester starts
Description of electronic access	TBA, if not able to arrange LMS access will provide materials
arrangements for students (for example,	via a Dropbox link
LMS)	

S A A C E

Subject content

1. Subject content description

Permutation groups embody the notion of a group being a measure of symmetry and are an important tool for exploring geometric and combinatorial structures. This course will look at the modern theory of permutation groups which takes advantage of recent advances in abstract group theory such as the Classification of Finite Simple Groups. The course will cover topics such as group actions, wreath products, multiply transitive groups, primitive groups, the O'Nan-Scott Theorem, and will look at applications to study the symmetry of graphs such as Cayley graphs and 2-arc-transitive graphs.

2. Week-by-week topic overview

A rough outline is as follows but is subject to change. Week 1: Group theory revision Week 2: Permutation groups and group actions Week 3: Coset actions and equivalent actions, Intransitive groups Week 4: Graphs and digraphs, Week 5: Actions in group theory Week 6: Primitive groups Week 7: Semidirect products and groups with a regular normal subgroup Week 8: Wreath products, Soluble and simple groups Week 9: Multiply transitive groups Week 10: O'Nan-Scott Theorem, Structure of finite primitive groups Week 11: Applications of O'Nan-Scott Theorem Week 12: Revision

3. Assumed prerequisite knowledge and capabilities

A first course in group theory that includes things such as groups, the symmetric and alternating groups, subgroups, cosets, normal subgroups, Lagrange's Theorem, homomorphisms, isomorphisms and quotient groups.

4. Learning outcomes and objectives

VE A C E K

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors
this subject	for this subject
develop mathematical intuitions and the	K1, S1, S2, S3, S5, A2
ability to articulate these intuitions within a	
formalism at an appropriate level;	
prove results about algebraic structures and	K1, S1, S2, S3, S5, A2
construct examples demonstrating key	
concepts;	
demonstrate a deep understanding of	K1, S1, S2, S3, S5, A2
algebraic structures and the techniques	
involved in proving the main results in the	
field	
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8

Knowledge K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines K2: knowledge of research principles and methods Skills S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas S3: cognitive skills to exercise critical thinking and judgement in developing new understanding S4: technical skills to design and use in a research project S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences **Application of Knowledge and Skills** A1: with initiative and judgement in professional practice and/or scholarship A2: to adapt knowledge and skills in diverse contexts A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

Students who would like further reading on the topics should see the following books. Skeletal notes will also be provided during the course.

Permutation groups, by John D. Dixon and Brian Mortimer Permutation groups, by Peter J. Cameron Permutation groups and cartesian decompositions, by Cheryl E. Praeger and Csaba

6. Assessment

Exam/assignment/classwork breakdown						
Exam	60 %	Assignments	20 %	Mid semester	20 %	
				test		
Assignment	due dates	31 st March.	12 th May.	Click here to	Click here to	
				enter a date.	enter a date.	
Approximate exam date			Final exam in exam period. Mid			
			semester test in week of 17 th			
	of April					

Institution honours program details

A C E N E T W O R K

Weight of subject in total honours assessment at	12.5%
host department	
Thesis/subject split at host department	50/50
Honours grade ranges at host department	
H1	80+
H2a	70-79
H2b	60-69
НЗ	50-59

Institution masters program details

Weight of subject in total masters assessment at	N/A
host department	
Thesis/subject split at host department	Click here to enter text.
Masters grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
НЗ	Enter range %