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ASSUMED KNOWLEDGE

• Knowledge of the index laws for positive integer powers.

• Facility with the arithmetic of integers and fractions.

• Facility with basic algebra.

• Familiarity with rounding numbers correct to a given number of decimal places.

MOTIVATION

Indices provide a compact algebraic notation for repeated multiplication. For example, is it 

much easier to write 35 than 3 × 3 × 3 × 3 × 3.

Once index notation is introduced the index laws arise naturally when simplifying 

numerical and algebraic expressions. Thus the simplificiation 25 × 23 = 28 quickly leads 

to the rule am × an = am + n, for all positive integers m and n. 

As often happens in mathematics, it is natural to ask questions such as:

• Can we give meaning to the zero index?

• Can we give meaning to a negative index?

• Can we give meaning to a rational or fractional index?

These questions will be considered in this module.

In many applications of mathematics, we can express numbers as powers of some given 

base. We can reverse this question and ask, for example, ‘What power of 2 gives 16? Our 

attention is then turned to the index itself. This leads to the notion of a logarithm, which is 

simply another name for an index. 

Logarithms are used in many places:

• decibels, that are used to measure sound pressure, are defined using logarithms

• the Richter scale, that is used to measure earthquake intensity, is defined using logarithms

• the pH value in chemistry, that is used to define the level of acidity of a substance,  

is also defined using the notion of a logarithm.
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When two measured quantities appear to be related by an exponential function, the 

parameters of the function can be estimated using log plots. This is a very useful tool in 

experimental science.

Logarithms can be used to solve equations such as 2x = 3, for x. 

In senior mathematics, competency in manipulating indices is essential, since they are 

used extensively in both differential and integral calculus. Thus, to differentiate or integrate 

a function such as x4
2

, it is first necessary to convert it to index form.

The function in calculus that is a multiple of its own derivative is an exponential function. 

Such functions are used to model growth rates in biology, ecology and economics, as 

well as radioactive decay in nuclear physics.

CONTENT

INDICES

We recall that a power is the product of a certain number of factors, all of which are 

the same. For example, 37 is a power, in which the number 3 is called the base and the 

number 7 is called the index or exponent.

In the module, Multiples, Factors and Powers, the following index laws were established for 

positive integer exponents. So positive integers and , and rational numbers and , we have:

Index Laws

1 To multiply powers with the same base, add the indices. 

aman = am+n. 

2 To divide powers with the same base, subtract the indices. 

am

an  = am – n, (provided m > n.)

3 To raise a power to a power, multiply the indices. 

(am)n = amn.
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4 A power of a product is the product of the powers. 

(ab)m = ambm.

5 A power of a quotient is the quotient of the powers. 

a
b

m

 = 
am

bm , (provided b ≠ 0.)

These laws also hold when a and b are real.

EXERCISE 1

Show that 
8a2b3

3a3b  ÷ 
4ab2

9a3b5  = 6ab5.

We now seek to give meaning to other types of exponents. The basic principle we use 

throughout is to choose a meaning that is consistent with the index laws above.

The Zero Index

Clearly 
53

53  = 1. On the other hand, applying index law 2, ignoring the condition m > n, 

we have 
53

53  = 50. If the index laws are to be applied in this situation, then we need to 

define 50 to be 1.

More generally, if a ≠ 0 then we define a0 = 1.

Note that 00 is not defined. It is sometimes called an indeterminant form. 

(The explanation of this term is that one can find sequences of numbers of the form ab in 

which both a and b approach 0, but where the limit of the sequence is not 1 and indeed 

can be made to be any number we like, by a suitable choice of and For example, the 

terms of the sequence

 1, 1
2

0

, 1
4

0

, 1
8

0

,…

are all equal to 1, while the terms of the sequence

 01, 0
1
2 , 0

1
4 , 0

1
8 , …

are all equal to 0. In each case the form of the terms approaches 00.

A similar situation occurs with a
b and so the expression 00 is also often referred to as an 

indeterminant form.

EXAMPLE

(3a2b)0 = 1, assuming a and b are not zero.

The index laws also hold for the zero index.



{7}The Improving Mathematics Education in Schools (TIMES) Project

Negative Exponents

If we examine the pattern formed when we take decreasing powers of 2, we see

 24 = 16, 23 = 8, 22 = 2, 21 = 2, 20 = 1, 2–1 = ?, 2–2 = ?

At each step as we decrease the index, the number is halved. Thus it is sensible to define

 2–1 = 1
2.

Furthermore, continuing the pattern, we define

 2–2 = 1
4 = 

1
22, 2

–3 = 1
8 = 

1
23, and so on.

These definitions are consistent with the index laws.

For example, 
23

24  = 23 – 4 = 2–1. But clearly, 
23

24  = 1
2.

Similarly, 
22

24  = 22 – 4 = 2–2. but clearly, 
22

24  = 1
4 = 

1
22.

We can confirm our intuition by considering and . 

In general, for any non-zero number , and positive integer , we define 

 a–1 = 1
a   and  a–n = 1

an.

Note that all the earlier index laws also hold for negative indices.

EXAMPLE

Simplify

a 8–2  b 2
3

–3

 c 
(a2)3

b3  ÷ 
a
b2

–2

SOLUTION

a 8–2 = 
1

64 b 2
3

–3

= 3
2

3

 = 
27
8  

c 
a
b3  ÷ 

a
b2

–2
 = 

a–6

b3  ÷ 
a–2

b–4 = 
a–6

b3  × 
b–4

a–2  = a–4b–7 = 
1

a4b7

Notice that 

• 
a
b

–1 

= ba

• When asked to simplify an expression involving indices, we generally express our 

answer using positive indices.

EXERCISE 2

Simplify 
x–1 + y–1

x–2 – y–2 .

–2
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For all intergers m and n and non‑zero numbers a and b the following are true.

Zero exponent a0 = 1

Negative exponent a–n = 1
an

Index law 1 Product of power aman = am+n

Index law 2 Quotient of power am ÷ an = 
am

an  = am – n

Index law 3 Power of a power (am)n = amn

Index law 4 Power of a product (ab)n = anbn

Index law 5 Power of a quotient a
b

n

 = 
an

bn

Fractional Indices

We now extend our study of indices to include rational or fractional exponents. In 

particular, can we give meaning to 4
1
2?

Once again, we would like the established index laws to hold. Hence, squaring this 

expression we would like to say:

  4
1
2

2

 = 4
1
2  × 2 = 41 = 4.

Thus we define 4
1
2  to be 4 = 2. 

In general we define a
1
2  = a for any positive number a. 

Note that we have defined a
1
2  to be the positive square root of We do this so that there is 

only one value for a
1
2 .

Applying a similar argument, for consistency with the index laws, we define a
1
3  = a

3
, 

a
1
4  = a

4
, and so on. 

In general, for any positive integer n and positive number a, define a
1
n  = a

n
.

EXAMPLE

27
1
2  = 3, 16

1
4  = 2, (a6)

2
3  = a4.

Assuming consistency with index law 3, we can write 8
1
3

2

 = 8
1
3  × 2 = 8

2
3 . But 8

1
3= 8

3
 = 2. 

Thus, 8
2
3  = 4.

The notation 8
2
3  means ‘the square of the cube root of 8’ which is equal to 4. 
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Note that we could also have expressed this as the ‘cube root of the square of 8’, which is, 

of course, also equal to 4, that is:

• 8
2
3  = 82

3
 = 64

3
 = 4 or,

• 8
2
3  = ( 8

3 )
2
 = 22 = 4.

In general, if is a positive number and are positive integers, we define

 a
p
q  = a

1
q

p

 or ap
q

. 

In words, we take the qth root of a and raise it to the power p.

EXAMPLE

Find a 16
3
4  b 

4
9

1
2

SOLUTION

a 16
3
4  = ( 16

4 )3 = 23 = 8 b 
4
9

1
2
 = 

4 
9

3 = 2
3

3

 = 8
27. 

Negative fractional indices

Finally, we can extend the indices to include negative rationals. For example, 

  8–
1
3  = 8

1
3

–1

 = 1

8
1
3

 = 1
2.

So that

 a
p
q  = 

1

a
p
q
. 

EXERCISE 3 

Show that: 32–
2
5  = 1

4, 
16
81

– 1
4
 = 

3
2, 2x

– 2
5

5

 = 
32
x2 . 

We have now defined ax for any positive real number a and any rational number x. 

It remains to check that the index laws also hold in this more general case. We will not 

go through the details. The following example outlines how this might be done in one 

particular case.

EXERCISE 4

This exercise asks you to give a proof that the first index law holds for negative integer 

exponents and also for fractional exponents. 

a By writing a–pa–q as 
1
ap × 1

aq, show that a–pa–q = a–p–q as, where p, q are positive integers. 

b By writing as show that a
1
n  × a

1
m as a

m
mn × a

n
mn = a

mn
m

 × a
mn

n

, show that a
1
n  × a

1
m = a

1
n  + 

1
m.

It is possible to give similar proofs that the other index laws also hold for negative integer 

and rational exponents.
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SCIENTIFIC NOTATION

Scientific notation, or standard form, is a convenient way to represent very large or very 

small numbers. It allows the numbers to be easily recorded and read.

The star Sirius is approximately 75 684 000 000 000 km from the sun. We can represent 

this number more compactly by moving the decimal point to just after the first non-zero 

digit and multiplying by an appropriate power of 10 to recover the original number. Thus 

 75 684 000 000 000 = 7.5684 × 1013. 

If we move the decimal point 13 places to the right, inserting the necessary zeroes, we 

arrive back at the number we started with.

We can similarly deal with very small numbers using negative indices. For example, an 

Angstrom (Å) is a unit of length equal to 0.000 000 000 1 m, which is the approximate 

diameter of a small atom. We place the decimal point just after the first non-zero digit and 

multiply by the appropriate power of ten. Thus, 

0.000 000 000 1 = 1 × 10–10. Hence, for example, the diameter of a uranium atom is 

0.000 000 000 38 m which we may write as 3.8 × 10–10 m or 3.8 Å.

The index laws may be used to perform operations on numbers written in scientific notation.

EXAMPLE

Simplify (3.14 × 10–2)3 ÷ (7.1 × 10–8) giving your answer correct to one decimal place.

SOLUTION

(3.14 × 10–2)3 ÷ (7.1 × 10–8) = (3.143 ÷ 7.1) × 102 ≈ 4.36044 × 102 ≈ 436.0 correct to 1 decimal 

place. In this case, we could leave this as the answer, or, if required, write is as 4.36 × 102.

Significant figures in scientific notation

Scientists and engineers routinely employ scientific notation to represent large and small 

numbers. Since all measurements are approximations anyway, they generally report the 

numbers rounded to a given number of significant figures. Thus, a number such as 2.1789 

× 107 could be written as approximately 2.18 × 107. This is the same as rounding the 

number 21 789 000 to 21 800 000, that is, correct to three significant figures. 

significant figures. For 

example, 3.1 has 2 significant figures, 3.14 has 3 significant figures and so on. To round 

a number to a required number of significant figures, first write the number in scientific 

notation and identify the last significant digit required. Then leave the digit alone if the next 

digit is 0, 1, 2 ,3 or 4 (in this case the original number is rounded down) and increase the last 

digit by one if the next digit is 5, 6, 7, 8 or 9 (in this case the original number is rounded up.)
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EXERCISE 5

Use a calculator to find 
2.3456 × 108 × 4.56923 × 10–6

0.0000384756  correct to 4 significant figures.

EXPONENTIAL GRAPHS

We can use the calculator to find approximate values of for various rational values of 2x. 

We place these in a table and we can then plot the ordered pairs (x, 2x)to produce a graph 

of y = 2x. 

EXAMPLE

Produce a table of values for the function y = 2x and use it to draw its graph.

SOLUTION

A table of approximate values follows:

x ‑3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3

y 0.125 0.177 0.25 0.354 0.5 0.707 1 1.414 2 2.828 4 5.657 8

0 1

1

–1–2–3 2

2

3

4

5

6

7

8

3 4
x

y

Note that although we have ‘joined the dots’ to form a smooth curve, we have not given 

any meaning at this stage to 2x  when is an irrational number. We cannot deal with this 

problem at this stage.

We note the following features of the graph.

• the graph is increasing.

• the values increase quite rapidly as we move along the axis.

• on the left hand‑side, the graph approaches, but never reaches, the axis.

EXERCISE 6

Draw the graphs of y = 3x and y = 3–x on the set of axes. 
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EXPONENTIAL EQUATIONS

An exponential equation is an equation in which the pronumeral appears as an index.  

For example, 23x = 64 is an exponential equation. 

We can see from the graph that the curve y = 23x and y = 64 the line only meet once, 

so there is one unique solution to the exponential equation.

0 1

1

y = 23x

y = 64

x

y

We can solve the equation as follows:

 23x = 64

 Hence 3x = 6, giving x = 2. 

EXAMPLE

a 2x = 1
8

b 7x = 1
343

c 7x = 1 d 81x = 243

SOLUTION

a 2x = 1
8 b 7x = 1

343 c 7x = 1 d 81x = 243

since, 1
8 = 2–3 since, 1

343 = 7–3 since, 70 = 1 since, (34)x = 35

2x = 2–3 7x  = 7–3 x = 0 4x = 5

x = –3 x  = –3 x = 5
4

EXERCISE 7

Solve 33 – x = 27x – 1.

How do we solve 2x = 7? The method used above does not work in quite the same way, 

since we do not know how to express 7 as a power of 2.

We will revisit this problem after we have looked at logarithms.

EXPONENTIAL GROWTH

The exponential function is used to model growth – generally population growth in 

biology, but this may also include the growth of money via compound interest.

Suppose that a culture initially contains 1000 bacteria and that this number doubles  

each hour. Thus, after



{13}The Improving Mathematics Education in Schools (TIMES) Project

• one hour there are 1000 × 2 bacteria

• two hours there are 1000 × 2 × 2  = 1000 × 22 bacteria

• three hours there are 1000 × 22 × 2 = 1000 × 23 bacteria

and so on. 

Following the pattern, if there are bacteria after hours then 

 N = 1000 × 2t.

This is an example of exponential growth.

Exponentials can also be used to model radioactive decay. Radioactivity is a natural 

phenomenon in which atoms of one element ‘decay’ to form atoms of another element 

by emitting a particle such as an alpha particle.

EXAMPLE

A sample of a radioactive substance with an initial mass of 100g decays over time, halving 

every hour. Find a formula for the amount, M g, present after hours.

SOLUTION

After 1 hour, the mass is 100 × 1
2g.

After 2 hours, the mass is 100 × 1
2 × 1

2 = 100 × 1
2

2
g.

After 3 hours, the mass is 100 × 1
2

2 
× 1

2 = 100 × 1
2

3
g.

Following this pattern, there are 

 M = 100 × 1
2

t 
g of the radioactive substance after hours.

A table is constructed below and the graph is plotted.

t 0 1 2 3 4 5 6

M 100 50 25 12.5 6.25 3.13 1.56

0 1

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 t(hours)

M

M = 100 × 1
2

t
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This is an example of exponential decay.

Exponential formulas have the form 

P = A × Bt, where A, B are positive constants. If

• B > 1, we say that P grows exponentially,

• B < 1 we say that P decays exponentially.

EXERCISE 8

For the rule y = 20 × 3t:

a Complete the table of values.

t 0 1 2 3

y

b Plot the graph of y against t.

c Find the value y, correct to 2 decimal places, when:

 i   t = 0.5  ii t = 2.5 iii t = 2.8

LOGARITHMS

It is easy to find values of x, such that 2x = 2 or 2x = 4, or 2x = 32. On the other hand, how 

do we solve the equation 2x = 10?

Problems such as this arise naturally when we deal with exponential growth and decay.  

In the example above, we gave the formula for the mass of a radioactive substance to be 

M = 100 × 1
2

t 
g. 

If we ask the question, when is the mass equal to say 30g, then we need to solve 1
2

t
 = 0.3 

to find the time.

Just as taking a square root is the inverse process to squaring, taking a logarithm is the 

inverse process to taking a power.

Since 23 = 8, we say that log2 8 = 3. That is, the logarithm is the index in the equation 

23 = 8. We read this as ‘the log of 8 to the base 2 is 3.’

To find the logarithm of a number a to the base b, we ask the question ‘what power do I 

raise b to, in order to obtain a?

So, to find for example, log3 243, we recall that 243 = 35, so log3 243 = 5.



{15}The Improving Mathematics Education in Schools (TIMES) Project

EXAMPLE

Find log8 4.

SOLUTION

One approach is to write, log8 4 = x and so 4 = 8x. Since both numbers are powers of 2, 

we can write 22 = (23)x = 23x.

Equating indices, 3x = 2, so x = 2
3. 

Thus, log8 4 =2
3.

(Indeed, 8
2
3  = ( 8

3 )
2
 = 22 = 4.)

The relationship connecting logarithms and powers is:

 x = loga y means y = ax. 

The number is called the base and must be a positive number. Also since ax is positive, we 

can only find the logarithm of a positive number. We will assume from now on that both 

are positive, but can be negative.

EXERCISE 9

Find the value of x.

a log2 32 = x b log8 1
64 = x c log2 x = 5

d logx 16 = 2 e log36 x = – 1
2 f log7 x = 2

Note: The following identities exemplify the inverse operations of taking a power and 

taking a logarithm. These need to be properly understood by students.

For x > 0,

 2log2 x = x.

More generally, for a > 0, x > 0,

 aloga x = x.

In the other direction, for any x,

 loga 2
x = x.

 

 More generally, for a > 0,

 loga a
x = x.

It is important for students to properly understand these two general identities.



{16} A guide for teachers

Logarithms to the base 10

You will notice that in all the examples above, the values of the logarithms were rational 

numbers, which were not too hard to find. Suppose we wanted to know the value of  

log10 7? Thus, we seek a number x such that 7 = 10x.

We can see from the graph of y = 10x that such a number lies between 0 and 1.

The calculator is able to give an approximate value of this number. It is shown in the 

module, The Real Numbers that numbers such as this are irrational.

Thus, to 4 decimal places, the calculator reports that log10 7 ≈ 0.8451.

The Logarithm Laws 

Suppose a > 0 for the rest of this section.

Law 1 loga = 0 and loga a = 1

  since a0 = 1, we have loga 1 = 0.

  Similarly, since a1 = a, we have loga a = 1.

Law 2 If x and y are positive numbers, then loga xy = loga x + loga y

  That is, the logaithm of a product is the sum of the logarithms.

Suppose x = ac and y = ad so that loga x = c and loga y = d.

Then xy = ac × ad

=ac+d (by Index law 1)

So loga xy = loga a
c+d

= c + d

= loga x + loga y

Law 3 If x and y are positive numbers, then loga 
x
y  = loga x – loga y.

  That is, the logarithm of a quatient is the difference of their logarithms.

Suppose x = ac and y = ad so that loga x = c and loga y = d.

Then x
y   = ac

ad  

 = ac–d (by Index law 2)

So loga 
x
y  = loga a

c–d

 = c – d

 = loga x + loga y
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Law 4 If x is a positive number, then loga 
1
x  = –loga x.

This follows from logarithm law 3 and logarithm law 1.

loga 
1
x = loga 1 – loga x (logarithm law 3)

= 0 – loga x (logarithm law 1)

= –loga x, as required. 

Law 5 If x is a positive number and n is any rational number, then loga (x
n) = nloga x.

This follows from logarithm law 3 and logarithm law 1.

 loga (x
n) = loga ((a

c)n)

= loga (a
cn) (by Index law 3)

= nloga x, as required. 

EXAMPLE

Given log7 2 = a, log7 3 = b and log7 5 = g, express in termd of a, b and g:

a log7 6 b log7 6 c log7 
15
2

SOLUTION

a log7 6 = log7 (2 × 3) b log7 6 = log7 (3 × 25)

 = log7 2 + log7 3  = log7 3 + log7 52

 = a + b  = b + 2g

c log7 
15
2  = log7 15 – log7 2

 = log7 (3 × 5) – log7 2

 = log7 3 + log7 5 – log7 2

 = b + g – a

EXERCISE 10

Simplify:

a logb x2 + logb x3 – logb x4 b logk 
a
b + logk 

b
a

c logb (x2 – a2) – logb (x – a), if x > a
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Change of base

Some calculators are able to find the logarithm of a number to any positive base. This is 

not, however, universal, and there are many occasions when we would like to change 

from one base to another. 

For example, to find log3 7 we can change from base 3 to base 10, where the calculator 

can be used. Change of base is also important in calculus, where logarithms to the base 

are used.

The change of base formula states that:

logb c = 
log

a 
c

log
a
 b

Here is a proof of this result.

Let x = logb c, then c = bx. 

Take logarithms to the base of both sides, then

loga c = loga b
x = xloga b (using logarithm law 5).

Hence x = 
log

a 
c

log
a
 b . That is logb c = 

log
a 
c

log
a
 b . 

EXAMPLE

Calculate log7 8 to four decimal places.

SOLUTION

Changing form base 7 to base 10.

log7 8
= 

log
10

 8
log

10
 7

≈ 1.0686

As a check, with the calculator, 71.0686 ≈ 7.9997.

The Logarithm graph

As we did for exponentials, we can draw the graph of y = log2 x by drawing up a table of values.

x
1

16
1
8

1
4

1
2 1 2 4 8 16

y –4 –3 –2 –1 0 1 2 3 4

0 (0, 1)

(2, 1)

(4, 2)

(8, 3)
y = log

2
 x

x

y

1
2
, –1
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We note the following features of the graph:

• the graph is to the right of the y‑axis, since only logarithms of positive numbers are defined.

• as becomes small, the y values become large negative numbers. Thus, the graph 

approaches, but does not touch, the negative axis. We say that the negative y-axis is 

an asymptote of the graph.

• the x‑intercept is (1, 0) since log2 1 = 0.

• the graph does not have a y‑intercept.

• as x takes large positive values, log2 x becomes large.

Logarithms and exponentials are inverses of each other. Their graphs are reflections of 

each other in the line y = x.

This is illustrated in the following graphs of y = log3 x and y = 3x. 

0 (1, 0)

(3, 1)

(9, 2)

(2, 9)

(1, 3)

(0, 1)

y = log
3
 x

y = x

y = 3x

x

y

1
3
, –1

– 1
3
, 1

EXERCISE 11

Use a table to draw on the same diagram the graphs of y = log2 x and y = log3 x. What 

can you say about the graphs when x < 1 and x > 1 when ?

Using Logarithms to solve exponential equations

We will conclude this module with some further applications of exponentials and logarithms.

Earlier in the module we raised the question of solving 2x = 7. If we have a calculator that 

finds logarithms to the base 2, we can solve this equation by re‑writing it using logarithms, 

 2x = 7

So, x = log2 7 ≈ 2.807 (correct to 3 dec. places.)

If the calculator only has logarithms to the base 10, we can use the change of base form 

to write 

log2 7 = 
log

10
 7

log
10

 2  ≈ 2.807 (correct to 3 dec. places.)
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Alternatively, we can take the logarithms to the base 10 of both sides and use the 

logarithm laws.

 2x = 7

 log10 2x = log10 7

 xlog10 2 = log10 7 (using the logarithms law)

Hence, x = 
��� �� ��
��� �� ��  ≈ 2.807 (correct to 3 dec. places.)

(Note that this is equivalent to changing the base from 7 to 10.)

EXERCISE 12

The following numbers exceed the capacity of your calculator. By taking logarithms of 

each number to the base 10, decide which is larger, 1023451 or 1023352. 

EXAMPLE

A culture of bacteria initially has a mass���P�G���Pne gram and triples in size every hour.  

How long will it take to reach a mass of 20 grams?

SOLUTION

Let y grams be the mass of the culture after t hours, then y = 3t.

If y = 20 then 20 = 3t.

log10 20 = log10 3t 

log10 20 = tlog10 3

t = 
��� �� ��
��� �� ��  

 ≈ 2.727 hours

 ≈ 2 hours 44 minutes

It will take approximately 2 hours 44 minutes for the mass to reach 20 gram.

Compound Interest

In the module, Consumer Arithmetic the compound interest formula

  An = P(1 + R)n

was introduced, where An was the amount that an initial investment P is worth after n units 

of time, when compounded at an interest rate R.

In many applications of this formula, we need to find the value of n. This can be done 

using logarithms.
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EXAMPLE

$50 000 is invested on Jan 1 2008 at 8% per annum. Interest is only paid on Jan 1 of each 

year. After how many years will the investment be worth:

a $75 000 b $100 000?

SOLUTION

a An = P(1 + R)n

 An = 75 000, P = 50 000 and R = 0.08

 75 000 = 50 000(1.8)n

 3
2

 = (1.8)n

 Take logarithm of both sides.

 log10 3
2

 = nlog10 (1.08)n

 n = 
log

10
 (2

3
)

log
10

 (1.08)  

  = 5.26844...

 At the end of the sixth year the investment will be worth $50 000(1.08)5 = $73 343.72.

 At the end of the fifth year the investment will be worth $50 000(1.08)5 = $73 466.40.

The investment will worth more than $75 000 at the end of the sixth year.

b An = P(1 + R)n

 An = 100 000, P = 50 000 and R = 0.08

 100 000 = 50 000(1.8)n

 2 = (1.8)n

 Take logarithm of both sides.

 log10 (2) = nlog10 (1.08)n

 n = log
10

 (2)
log

10
 (1.08)  

  = 9.00646...

 At the end of the tenth year the investment will be worth  

 $50 000(1.08)10 = $107 946.25.

 At the end of the ninth year the investment will be worth $50 000(1.08)10 = $99 950.23.

The investment will worth more than $100 000 at the end of the sixth year.
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EXERCISE 13

An amount of $100,000 is invested at an annual interest rate of 6.25%. If the interest is 

calculated yearly, how long before the investment has reached $150, 000? What is the 

answer if the interest is paid monthly? 

LINKS FORWARD

Irrational Indices

In this module we have extended the meaning of ab to include all rational values of b. 

It is thus pertinent to ask: ‘What about an expression such as 3 2?’

Can this be given any meaning? After all, if you enter this into a calculator an answer is 

produced – but what does the answer actually mean? The calculator is, of course, simply 

approximating 2 by a rational number. So if we approximate 2 by 1.414 = 1414
1000, this would 

produce the number 3 1414
1000, which has the usual meaning as outlined in this module. Its 

value is approximately 4.7277 (correct to four decimal places.) This however does not 

equal 3 2, but it does give us a hint as to how we might give this number meaning. 

One way to define 3 2 is to think of it as the limit of a sequence of approximations, each one 

obtained by taking better and better approximations to 2 and proceeding as above. Thus

 31.4 ≈ 4.6555, 31.41 ≈ 4.7070, 31.414 ≈ 4.7277 and so on.

This is not, of course, as satisfying as the definitions we gave for rational powers.

An alternative, but equivalent definition for real powers can be given once the exponential 

function and the natural logarithm have been introduced. In general, for any real number 

b and positive real number a, we can define ab to be eblog a, where the logarithm is to the 

base e. Thus, 3 2 = e 2log 3 ≈ 4.7288 correct to 4 decimal places.) Note that this is consistent 

with the logarithm law alog b = log ab and also the inverse relationship between 

exponentials and logarithms elog x = x.

This definition is also used for exponents involving complex numbers, but there the 

situation becomes more complicated and is best left until tertiary study.

The Natural Logarithm and the number e

In senior mathematics, the so‑called natural logarithm loge x, also written as ln x, or 

simply as log x, arises when we try to integrate the expression 1
t . 

Thus 
x

1

1
t  dt = loge x.

The base of this logarithm is the irrational number e ≈ 2.71828.
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The functions y = ex and y = loge x are inverse functions, so that elog x = x, for x > 0, and 

loge e
x = x, for all real x. These functions are central to an understanding of exponential 

growth (used to model populations and compound interest) as well as radioactive decay 

and other physical processes. Thus, they arise is chemistry, biology, economics, finance, 

and statistics as well as physics and engineering.

HISTORY AND APPLICATIONS

Index notation is comparatively modern. The Greek writer Diophantus used the symbol 

to denote what we would call x2 and K for x3. In medieval algebra, Q and C were used 

instead. Even in the 16th century, people were still writing xxx for x3 but our modern 

notation is clearly evident in Maclaurin’s Treatise on Algebra (1779).

Although conceptually, logarithms are implicit in some of the early Indian mathematics, it 

was John Napier’s book Mirifici Logarithmorum Canonis Descriptio in 1614, that formally 

introduced the concept and name. (The word is a combination of the Greek words logos 

and arithmos, and thus literally means number reckoning.

Until the advent of the modern calculator, logarithms were used extensively to aid in 

complicated arithmetic calculations. This use continued in schools until the early 1980’s, 

when cheap scientific calculators became available.

Thus, for example, to find 23.14 × 0.4526, each number was converted to its logarithm 

base 10 (there were tables and methods to do this). These were added and the result was 

raised to the power 10, using so‑called anti-logarithm tables, to produce the required 

answer. This method exploited the index law, log10 xy = log10 x + log10 y.

To perform a division such as 23.14 ÷ 0.4526, the logarithms were subtracted.

To find, for example, 463.2
5

 the logarithm to the base 10 of 463.2 was divided by 5 and 

then the table of anti‑logarithms was applied to find the answer. This used the result,  

log10 a
5

 = log10 a
1
5  + 1

5 log10 a.

In addition logarithm tables of the trigonometric ratios were available to assist with 

trigonometric calculations.

pH Values

Logarithms to the base 10 are still used extensively in chemistry. The measure of acidity 

of a solution is called its pH value. Acidity is connected to the the molar concentration of 

dissolved hydronium ions (H3O
+), and the pH of a solution is the negative of the logarithm 

of this quantity. The modern definition was introduced in 1924. A pH of 7, corresponding 

to a molar concentration of 10–7, is called neutral and is the pH of water. The closer to 0, 

the more acidic a solution is, while a pH closer to 14 tells us that the solution is alkaline. 
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Log plots 

When a collection of data is plotted and the scientist suspects that there is an exponential 

relationship between the two quantities being plotted, then a log plot can be used.  

Thus, if the two quantities x, y are related by y = ax + b, where a and b are unknown, then 

log10 y = xlog10 a + blog10 a. Writing m = log10 a and c = blog10 a, the equation becomes 

y = mx + c which represents a straight line with gradient m and y‑intercept c. Hence, 

plotting log10 y against x should approximately produce a straight line and the values 

of m, c and hence a, b are relatively easy to estimate. This is a very powerful and clever 

application of logarithms, that is used widely in experimental science.

ANSWERS TO EXERCISES

EXERCISE 2
x–1 + y–1

x–2 + y–2  = 
xy

y – x  

EXERCISE 4

a a–pa–q = a
1
p  × a

1
q  = a

1
p + q = a–(p + q) = a –p –q

b a
1
n  × a

1
m = a

m
mn × a

n
mn = a

mn
m

 × a
mn

n

 = a
mn

m+n

 = a
m+n
mn  = a

1
n

+ 1
m 

EXERCISE 5

27860000

EXERCISE 6

0

(0, 1)

y = 3x

y = 3–x

x

y

EXERCISE 7

x = 3
2

EXERCISE 8

a Complete the table of values.

t 0 1 2 3

y 20 60 180 540



b 

0 1

600

500

400

300

200

100

2 3
t

y

c Using a calculator,

 i    When t = 0.5, y = 34.64  ii When t = 2.5, y = 311.77  

 iii  When t = 2.8, y = 433.48 

EXERCISE 9

a log2 32 = x, is equivalent to 2x = 32, so x = 5.

b log8 1
64 = x, is equivalent to 8x = 1

64, so x = –2. 

c log2 x = 5, is equivalent to 25 = x, so x = 32.

d logx 16 = 2, is equivalent to x2 = 16, so x = 4. 

e log36 x = – 1
2, is equivalent to 36–

1
2  = x, so x = 1

6. 

f log7 x = 2, is equivalent to 72 = x, so x = 49.

EXERCISE 10

a logb x2 + logb x3 – logb x4 = 2logb x + 3logb x – 4logb x

= logb x

b logk 
a
b + logk 

b
a = logk 

a
b × ba

= logk 1 

= 0

c logb (x2 – a2) – logb (x – a) = logb x2 – a2

x – a

= logb (x + a)(x – a)
x – a

= logb (x + a)
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EXERCISE 11

log3 x < log2x for x >1 and log2 x < log3 x for x < 1.

0

y = log
3
 x

y = log
2 
 x

x

y

EXERCISE 12

1023352 is larger.

EXERCISE 13

7 years

79 months
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