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Trigonometric
functions and
circular measure

Assumed knowledge

The content of the modules:

• Introductory trigonometry (Years 9–10)

• Further trigonometry (Year 10)

• Trigonometric functions (Year 10).

Motivation

The Greeks developed a precursor to trigonometry, by studying chords in a circle. How-

ever, the systematic tabulation of trigonometric ratios was conducted later by the Indian

and Arabic mathematicians. It was not until about the 15th century that a ‘modern’ ap-

proach to trigonometry appeared in Europe.

Two of the original motivations for the study of the sides and angles of a triangle were

astronomy and navigation. These were of fundamental importance at the time and are

still very relevant today.

With the advent of coordinate geometry, it became apparent that the standard trigono-

metric ratios could be graphed for angles from 0◦ to 90◦. Using the coordinates of points

on a circle, the trigonometric ratios were extended beyond the angles found in a right-

angled triangle. It was then discovered that the trigonometric functions are periodic and

so can be used to model periodic behaviour in nature and in science generally.

More recently, the discovery and exploitation of electricity and electromagnetic waves

introduced exciting and very powerful new applications of the trigonometric functions.

Indeed, of all the applications of classical mathematics, this is possibly one of the most

profound and world changing. The trigonometric functions give the key to understand-

ing and using wave motion and manipulating signals in communications. Decomposing

signals into combinations of trigonometric functions is known as Fourier analysis.
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In this module, we will revise the basics of triangle trigonometry, including the sine and

cosine rules, and angles of any magnitude.

We will then look at trigonometric expansions, which will be very important in the later

module The calculus of trigonometric functions. All this is best done, initially, using

angles measured in degrees, since most students are more comfortable with these units.

We then introduce radian measure, which is a natural way of measuring angles using arc

length. This is absolutely essential as a prerequisite for the calculus of the trigonometric

functions and also gives us simple formulas for the area of a sector, the area of a segment

and arc length of a circle.

Finally, we conclude with a section on graphing the trigonometric functions, which illus-

trates their wave-like properties and their periodicity.

Content

The trigonometric ratios

If we fix an acute angle θ, then all right-angled triangles that have θ as one of their angles

are similar. So, in all such triangles, corresponding pairs of sides are in the same ratio.

adjacent

hypotenuse opposite

θ

The side opposite the right angle is called the hypotenuse. We label the side opposite θ

as the opposite and the remaining side as the adjacent. Using these names we can list

the following standard ratios:

sinθ = opposite

hypotenuse
, cosθ = adjacent

hypotenuse
, tanθ = opposite

adjacent
.

Allied to these are the three reciprocal ratios, cosecant, secant and cotangent:

cosecθ = hypotenuse

opposite
, secθ = hypotenuse

adjacent
, cotθ = adjacent

opposite
.

These are called the reciprocal ratios as

cosecθ = 1

sinθ
, secθ = 1

cosθ
, cotθ = 1

tanθ
.
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The trigonometric ratios can be used to find lengths and angles in right-angled triangles.

Example

Find the value of x in the following triangle.

3

x
72 º

Solution

We have

x

3
= cot72◦ = 1

tan72◦
.

Hence

x = 3

tan72◦ ≈ 0.97, correct to two decimal places.

Special angles

The trigonometric ratios of the angles 30◦, 45◦ and 60◦ can be easily expressed as frac-

tions or surds, and students should commit these to memory.

Trigonometric ratios of special angles

θ sinθ cosθ tanθ

30◦ 1

2

p
3

2

1p
3

45◦ 1p
2

1p
2

1

60◦
p

3

2

1

2

p
3
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1 1 1

1

45 º

30 º

60 º

2 22√

3√

Triangles for the trigonometric ratios of special angles.

Extending the angles

In the module Further trigonometry (Year 10), we showed how to redefine the trigono-

metric functions in terms of the coordinates of points on the unit circle. This allows the

definition of the trigonometric functions to be extended to the second quadrant.

y

x
O Q

P (cos θ,sin θ) 

1

θ
1

If the angle θ belongs to the first quadrant, then the coordinates of the point P on the

unit circle shown in the diagram are simply (cosθ, sinθ).

Thus, if θ is the angle between OP and the positive x-axis:

• the cosine of θ is defined to be the x-coordinate of the point P on the unit circle

• the sine of θ is defined to be the y-coordinate of the point P on the unit circle.

We can apply this definition to any angle.

The tangent ratio is then defined by

tanθ = sinθ

cosθ
,

provided cosθ is not zero.
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As an example, let us take θ to be 30◦, so P has coordinates (cos30◦, sin30◦). Now move

the point P around the circle to P ′, so that OP ′ makes an angle of 150◦ with the posi-

tive x-axis. Note that 30◦ and 150◦ are supplementary angles. The coordinates of P ′ are

(cos150◦, sin150◦).

y

x
OQ’ Q

P (cos 30 º,sin 30 º) 
150 º

1
30 º30 º

P’ (cos 150 º,sin 150 º) 

But we can see that the triangles OPQ and OP ′Q ′ are congruent, so the y-coordinates of

P and P ′ are the same. Thus, sin150◦ = sin30◦. Also, the x-coordinates of P and P ′ have

the same magnitude but opposite sign, so cos150◦ =−cos30◦.

From this typical example, we see that if θ is any obtuse angle, then its supplement

180◦−θ is acute, and the sine of θ is given by

sinθ = sin(180◦−θ), where 90◦ < θ < 180◦.

Similarly, if θ is any obtuse angle, then the cosine of θ is given by

cosθ =−cos(180◦−θ), where 90◦ < θ < 180◦.

In words this says:

• the sine of an obtuse angle equals the sine of its supplement

• the cosine of an obtuse angle equals minus the cosine of its supplement.

Exercise 1

On the unit circle, place the point P corresponding to each of the angles 0◦, 90◦, 180◦,

270◦ and 360◦. By considering the coordinates of each of these points, complete the

following table of trigonometric ratios.
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Coordinates of P θ sinθ cosθ tanθ

0◦

90◦ undefined

180◦

270◦ undefined

360◦

The four quadrants

The coordinate axes divide the plane into four quadrants, labelled first, second, third and

fourth as shown. Angles in the third quadrant, for example, lie between 180◦ and 270◦.

90 º

270 º

360 º

0 º

180 º

First quadrantSecond quadrant

Third quadrant Fourth quadrant

By considering the x- and y-coordinates of the point P as it lies in each of the four quad-

rants, we can identify the sign of each of the trigonometric ratios in a given quadrant.

These are summarised in the following diagrams.

O

sin θ positive
cos θ negative

sin θ negative
cos θ negative

sin θ positive
cos θ positive

sin θ negative
cos θ positive

180 º 0 º

90 º

270 º

O

tan θ negative tan θ positive

180 º 0 º

90 º

270 º

tan θ positive tan θ negative
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Related angles

In the module Further trigonometry (Year 10), we saw that we could relate the sine and

cosine of an angle in the second, third or fourth quadrant to that of a related angle in

the first quadrant. The method is very similar to that outlined in the previous section for

angles in the second quadrant.

We will find the trigonometric ratios for the angle 210◦, which lies in the third quadrant.

In this quadrant, the sine and cosine ratios are negative and the tangent ratio is positive.

To find the sine and cosine of 210◦, we locate the corresponding point P in the third

quadrant. The coordinates of P are (cos210◦, sin210◦). The angle POQ is 30◦ and is called

the related angle for 210◦.

y

x
O 1

(cos 30 º,sin 30 º) 

P(cos 210 º,sin 210 º) 

30 º
210º

30 º

Q

So,

cos210◦ =−cos30◦ =−
p

3

2
and sin210◦ =−sin30◦ =−1

2
.

Hence

tan210◦ = tan30◦ = 1p
3

.

In general, if θ lies in the third quadrant, then the acute angle θ−180◦ is called the related

angle for θ.

Exercise 2

a Use the method illustrated above to find the trigonometric ratios of 330◦.

b Write down the related angle for θ, if θ lies in the fourth quadrant.

The basic principle for finding the related angle for a given angle θ is to subtract 180◦

from θ or to subtract θ from 180◦ or 360◦, in order to obtain an acute angle. In the case
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when the related angle is one of the special angles 30◦, 45◦ or 60◦, we can simply write

down the exact values for the trigonometric ratios.

In summary, to find the trigonometric ratio of an angle between 0◦ and 360◦:

• find the related angle

• obtain the sign of the ratio by noting the quadrant

• evaluate the trigonometric ratio of the related angle and attach the appropriate sign.

Example

Use the related angle to find the exact value of

1 sin120◦ 2 cos150◦ 3 tan300◦ 4 cos240◦.

Solution

1 The angle 120◦ is in the second quadrant, and its related angle is 60◦.

So sin120◦ = sin60◦ =
p

3

2
.

y

x
O

120 º

1
60 º

1

2 cos150◦ =−cos30◦ =−
p

3

2

y

x
O

150 º

1
30 º

1
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3 tan300◦ =− tan60◦ =−p3

y

x
O

300 º

1

1

60 º

4 cos240◦ =−cos60◦ =−1

2

y

x
O

240 º

1

1

60 º

Exercise 3

Find the exact value of

a sin210◦ b cos315◦ c tan150◦.

The sine and cosine rules

The sine rule

In the module Further trigonometry (Year 10), we introduced and proved the sine rule,

which is used to find sides and angles in non-right-angled triangles.

a

A b

c

B

C

In the triangle ABC , labelled as shown, we have

a

sin A
= b

sinB
= c

sinC
.
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Clearly, we may also write this as

sin A

a
= sinB

b
= sinC

c
.

In general, one of the three angles may be obtuse. The formula still holds true, although

the geometric proof is slightly different.

Exercise 4

a Find two expressions for h in the diagram below, and hence deduce the sine rule.

ha

B

C

P A

b

c

b Repeat the method of part (a), using the following diagram, to show that the sine rule

holds in obtuse-angled triangles.

h a

B

C

M A

b

c

Example

The triangle ABC has AB = 9 cm, ∠ABC = 76◦ and ∠AC B = 58◦.

BC

A

58 º 76 º

9 cm

Find, correct to two decimal places,

1 AC 2 BC .
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Solution

1 Applying the sine rule gives

AC

sin76◦ = 9

sin58◦

and so

AC = 9sin76◦

sin58◦

≈ 10.30 cm (to two decimal places).

2 To find BC , we first find the angle ∠C AB opposite it.

∠C AB = 180◦−58◦−76◦

= 46◦.

Thus, by the sine rule,

BC

sin46◦ = 9

sin58◦

and so

BC ≈ 7.63 cm (to two decimal places).

The ambiguous case

In the module Congruence (Year 8), it was emphasised that, when applying the SAS con-

gruence test, the angle in question has to be the angle included between the two sides.

For example, the following diagram shows two non-congruent triangles ABC and ABC ′

having two pairs of matching sides and sharing a common (non-included) angle.

45 º

7

B C C ‘

A

9
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Suppose we are told that a triangle PQR has PQ = 9, ∠PQR = 45◦ and PR = 7. Then the

angle opposite PQ is not uniquely determined. There are two non-congruent triangles

that satisfy the given data.

45 º

77

Q R’ R

P

9

θθ'

Applying the sine rule to the triangle, we have

sinθ

9
= sin45◦

7

and so

sinθ = 9sin45◦

7

≈ 0.9091.

Thus θ ≈ 65◦, assuming that θ is acute. But the supplementary angle is θ′ ≈ 115◦. The

triangle PQR ′ also satisfies the given data. This situation is sometimes referred to as the

ambiguous case.

Since the angle sum of a triangle is 180◦, in some circumstances only one of the two

angles calculated is geometrically valid.

The cosine rule

We know from the SAS congruence test that a triangle is completely determined if we are

given two sides and the included angle. However, if we know two sides and the included

angle in a triangle, the sine rule does not help us determine the remaining side or the

remaining angles.

The second important formula for general triangles is the cosine rule.
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Suppose ABC is a triangle and that the angles A and C are acute. Drop a perpendicular

from B to the line interval AC and mark the lengths as shown in the following diagram.

h a

B

CDA

c

b
xb – x

In the triangle ABD , applying Pythagoras’ theorem gives

c2 = h2 + (b −x)2.

Also, in the triangle BC D , another application of Pythagoras’ theorem gives

h2 = a2 −x2.

Substituting this expression for h2 into the first equation and expanding,

c2 = a2 −x2 + (b −x)2

= a2 −x2 +b2 −2bx +x2

= a2 +b2 −2bx.

Finally, from triangle BC D , we have x = a cosC and so

c2 = a2 +b2 −2ab cosC .

This last formula is known as the cosine rule.

Notice that, if C = 90◦, then since cosC = 0 we obtain Pythagoras’ theorem, and so we

can regard the cosine rule as Pythagoras’ theorem with a correction term.

The cosine rule is also true when the angle C is obtuse. But note that, in this case, the

final term in the formula will produce a positive number, because the cosine of an obtuse

angle is negative. Some care must be taken in this instance.

By relabelling the sides and angles of the triangle, we can also write the cosine rule as

a2 = b2 + c2 −2bc cos A and b2 = a2 + c2 −2ac cosB .
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Example

Find the value of x to one decimal place.

110 º
7 cm

8 cm

x cm

Solution

Applying the cosine rule gives

x2 = 72 +82 −2×7×8×cos110◦

= 113+112cos70◦

≈ 151.306,

so x ≈ 12.3 (to one decimal place).

Finding angles

If the three sides of a triangle are known, then the three angles are uniquely determined.

(This is the SSS congruence test.) Again, the sine rule is of no help in finding the three

angles, since it requires the knowledge of (at least) one angle, but we can use the cosine

rule instead.

We can substitute the three side lengths a, b, c into the formula c2 = a2 +b2 −2ab cosC ,

where C is the angle opposite the side c, and then rearrange to find cosC and hence C .

Alternatively, we can rearrange the formula to obtain

cosC = a2 +b2 − c2

2ab

and then substitute. Students may choose to rearrange the cosine rule or to learn this

further formula. Using this form of the cosine rule often reduces arithmetical errors.
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Recall that, in any triangle ABC labelled as shown, if a < b, then angle A < angle B .

a

A b

c

B

C

Example

A triangle has side lengths 6 cm, 8 cm and 11 cm. Find the smallest angle in the triangle.

6
8

11

θ

Solution

The smallest angle in the triangle is opposite the smallest side.

Applying the cosine rule:

62 = 82 +112 −2×8×11×cosθ

cosθ = 82 +112 −62

2×8×11

= 149

176
.

So θ ≈ 32.2◦ (correct to one decimal place).

The area of a triangle

We saw in the module Introductory trigonometry (Years 9–10) that, if we take any triangle

with two given sides a and b about a given (acute) angle θ, then the area of the triangle is

Area = 1

2
ab sinθ.

This formula also holds when θ is obtuse.
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Exercise 5

A triangle has two sides of length 5 cm and 4 cm containing an angle θ. Its area is 5 cm2.

Find the two possible (exact) values of θ and draw the two triangles that satisfy the given

information.

Exercise 6

Write down two different expressions for the area of a triangle ABC and derive the sine

rule from them.

Trigonometric identities

The Pythagorean identity

There are many important relationships between the trigonometric functions which are

of great use, especially in calculus. The most fundamental of these is the Pythagorean

identity. For acute angles, this is easily proven from the following triangle ABC with

hypotenuse of unit length.

B

1

A
θ

C

sin θ

cos θ

With ∠B AC = θ, we see that AC = cosθ and BC = sinθ. Hence Pythagoras’ theorem tells

us that

cos2θ+ sin2θ = 1.

This formula holds for all angles, since every angle can be related to an angle in the first

quadrant whose sines and cosines differ only by a sign, which is dealt with by squaring.

Dividing this equation respectively by cos2θ and by sin2θ, we obtain

1+ tan2θ = sec2θ and cot2θ+1 = cosec2θ.

From these standard identities, we can prove a variety of results.
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Example

Prove the following identities:

1 (1− sinθ)(1+ sinθ) = cos2θ

2
2cos3θ−cosθ

sinθ cos2θ− sin3θ
= cotθ.

Solution

1 LHS = (1− sinθ)(1+ sinθ)

= 1− sin2θ (difference of two squares)

= cos2θ (Pythagorean identity)

= RHS

2 LHS = 2cos3θ−cosθ

sinθ cos2θ− sin3θ

= cosθ
(
2cos2θ−1

)
sinθ

(
cos2θ− sin2θ

)
= cosθ

(
2cos2θ−1

)
sinθ

(
cos2θ− (1−cos2θ)

)
= cosθ

(
2cos2θ−1

)
sinθ

(
2cos2θ−1

)
= cosθ

sinθ

= cotθ

= RHS

Exercise 7

Prove that

1

secθ+ tanθ
= cosθ

1+ sinθ
.
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Double angle formulas

The sine and cosine functions are not linear. For example, cos(A +B) 6= cos A + cosB .

The correct formula for cos(A +B) is given in the next subsection. In the special case

when A = B = θ, we would like to obtain a simple formula for cos(2θ) = cos2θ, called the

double angle formula. It is particularly useful in applications and in calculus and is quite

easy to derive.

Consider the following isosceles triangle ABC , with sides AB and AC both of length 1

and apex angle 2θ. We will need to assume, for the present, that 0◦ < θ < 90◦.

B

A

D

θ θ

C

11

Let AD be the perpendicular bisector of the interval BC . Then, using basic properties of

an isosceles triangle, we know that AD bisects ∠B AC and so BD = DC = sinθ. Applying

the cosine rule to the triangle ABC , we immediately have

cos2θ = 12 +12 −4sin2θ

2×1×1

= 2−4sin2θ

2

= 1−2sin2θ.

Replacing 1 by cos2θ+ sin2θ, we arrive at the double angle formula

cos2θ = cos2θ− sin2θ.

This may also be written as cos2θ = 2cos2θ−1 or cos2θ = 1−2sin2θ, but is best learnt

in the form given above.

We derived this formula under the assumption that θ was between 0◦ and 90◦, but the

formula in fact holds for all values of θ. We shall see this in the next subsection, where

we prove the general expansion formula for cos(A+B).
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Example

Find cos22 1
2
◦

in surd form.

Solution

Putting θ = 22 1
2
◦

into the double angle formula cos2θ = 2cos2θ− 1 and writing x for

cos22 1
2
◦
, we obtain

cos45◦ = 2x2 −1

1p
2
= 2x2 −1

2x2 = 1+p
2p

2

x =
√

1+p
2

2
p

2
,

which simplifies to 1
2

√
2+p

2.

We can also find a double angle formula for sine using the same diagram.

B

A

D

θ θ

C

11

In this case, we write down formulas for the area of 4ABC in two ways:

• On the one hand, the area is given by 1
2 AB · AC sin(∠B AC ) = 1

2 sin2θ.

• Since AD = cosθ, we can alternatively split the triangle into two right-angled triangles

and write the area as 2× 1
2 sinθ cosθ = sinθ cosθ.

Equating these two expressions for the area, we obtain

sin2θ = 2sinθcosθ.

As before, we assumed that θ lies between 0◦ and 90◦, but the formula is valid for all

values of θ.
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Exercise 8

Find sin15◦ in surd form.

From the Pythagorean identity and the double angle formula for cosine, we have

cos2θ+ sin2θ = 1

cos2θ− sin2θ = cos2θ.

Adding these equations and dividing by 2 we obtain cos2θ = 1
2 (cos2θ+ 1), while sub-

tracting them and dividing by 2 we obtain sin2θ = 1
2 (1−cos2θ). These formulas are very

important in integral calculus, as discussed in the module The calculus of trigonometric

functions.

Exercise 9

Use the double angle formulas for sine and cosine to show that

tan2θ = 2tanθ

1− tan2θ
, for tanθ 6= ±1.

Summary of double angle formulas

sin2θ = 2sinθcosθ

cos2θ = cos2θ− sin2θ

= 2cos2θ−1

= 1−2sin2θ

tan2θ = 2tanθ

1− tan2θ
, for tanθ 6= ±1

Trigonometric functions of compound angles

In the previous subsection, we derived formulas for the trigonometric functions of dou-

ble angles. That derivation, which used triangles, was only valid for a limited range of

angles, although the formulas remain true for all angles.

In this subsection we find the expansion formulas for sin(A+B), sin(A−B), cos(A+B)

and cos(A−B), which are valid for all A and B . The double angle formulas can be recov-

ered by putting A = B = θ.

These formulas are quite central in trigonometry. In the module The calculus of trigono-

metric functions, they are used to find, among other things, the derivative of the sine

function.
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To prove the cos(A −B) formula, from which we can obtain the other expansions, we

return to the circle definition of the trigonometric functions.

Consider two points P (cos A, sin A) and Q(cosB , sinB) on the unit circle, making angles

A and B respectively with the positive x-axis.

y

x
O

Q (cos B,sin B) 

1–1
B

A

P (cos A,sin A) 

We will calculate the distance PQ in two ways and then equate the results. First we apply

the cosine rule to the triangle OPQ. Note that, in the diagram above, ∠POQ = A −B . In

general, it is always the case that cos(∠POQ) = cos(A−B). So the cosine rule gives

PQ2 = 12 +12 −2×1×1×cos(A−B) = 2−2cos(A−B).

On the other hand, using the square of the distance formula from coordinate geometry,

PQ2 = (cosB −cos A)2 + (sinB − sin A)2

= cos2 A+ sin2 A+cos2 B + sin2 B −2cos A cosB −2sin A sinB

= 2−2(cos A cosB + sin A sinB).

Equating the two expressions for PQ2, we have

cos(A−B) = cos A cosB + sin A sinB.

We can easily obtain the formula for cos(A +B) by replacing B with −B in the formula

for cos(A−B) and recalling that cos(−θ) = cosθ (the cosine function is an even function)

and sin(−θ) =−sinθ (the sine function is an odd function).

Hence

cos(A+B) = cos A cos(−B)+ sin A sin(−B)

= cos A cosB − sin A sinB.
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Using the identity sinθ = cos(90◦−θ), we can show that

sin(A+B) = sin A cosB +cos A sinB ,

sin(A−B) = sin A cosB −cos A sinB.

These four compound angle formulas are important and the student should remember

them. Most other trigonometric identities can be derived from these and the standard

Pythagorean identity cos2θ+ sin2θ = 1.

Exercise 10

Use the identity sinθ = cos(90◦−θ) to derive the sine expansions.

The following exercise gives a simple geometric derivation of the sine expansion.

Exercise 11

Fix acute angles α and β. Construct a triangle ABC as shown in the following diagram.

(Start by drawing the line interval C D . Then construct the right-angled triangles BC D

and AC D .)

B D A

C

β
α

a by

a Prove that y = a cosα and y = b cosβ.

b By comparing areas, show that

1

2
ab sin(α+β) = 1

2
ay sinα+ 1

2
by sinβ.

c Deduce the expansion formula for sin(α+β).

Using the compound angle formulas, we can extend the range of angles for which we can

obtain exact values for the trigonometric functions.

Example

Find the exact value of

1 cos75◦ 2 sin75◦ 3 cos105◦.
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Solution

1 cos75◦ = cos(45◦+30◦)

= cos45◦ cos30◦− sin45◦ sin30◦

= 1p
2

p
3

2
− 1p

2

1

2

= 1

4

(p
6−

p
2
)

2 sin75◦ = sin(45◦+30◦)

= sin45◦ cos30◦+cos45◦ sin30◦

= 1p
2

p
3

2
+ 1p

2

1

2

= 1

4

(p
6+p

2
)

3 cos105◦ = cos(45◦+60◦)

= cos45◦ cos60◦− sin45◦ sin60◦

= 1p
2

1

2
− 1p

2

p
3

2

= 1

4

(p
2−p

6
)

(Note that we could obtain cos105◦ directly from cos75◦, since the two angles are

supplementary.)

We can also find expansions for tan(A +B) and tan(A −B). Recalling that tanθ = sinθ

cosθ
,

we can write

tan(A+B) = sin(A+B)

cos(A+B)
= sin A cosB +cos A sinB

cos A cosB − sin A sinB
.

Dividing the numerator and denominator by cos A cosB , we obtain

tan(A+B) =
sin A
cos A + sinB

cosB

1− sin A sinB
cos A cosB

= tan A+ tanB

1− tan A tanB
.

Since tan(−B) =− tanB , we have

tan(A−B) = tan A− tanB

1+ tan A tanB
.

Note carefully the pattern with the signs.
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Exercise 12

Find the exact value of tan15◦.

Putting A = B = θ in the expansion formula for tan(A+B), we obtain

tan2θ = 2tanθ

1− tan2θ
.

Exercise 13

Show that t = tan67 1
2
◦

satisfies the quadratic equation t 2 −2t −1 = 0 and hence find its

exact value.

The angle between two lines

The tangent expansion formula can be used to find the angle, or rather the tangent of the

angle, between two lines.

y

x
O

P

β α

ℓ
n
γ

Suppose two lines ` and n with gradients m1 and m2, respectively, meet at the point P .

The gradient of a line is the tangent of the angle it makes with the positive x-axis. So, if

` and n make angles α and β, respectively, with the positive x-axis, then tanα= m1 and

tanβ= m2. We will assume for the moment that α>β, as in the diagram above.

Now, if γ is the angle between the lines (as shown), then γ=α−β. Hence

tanγ= tan(α−β) = tanα− tanβ

1+ tanα tanβ
= m1 −m2

1+m1m2
,

provided m1m2 6= −1. If m1m2 = −1, the two lines are perpendicular and tanγ is not

defined.

In general, the above formula may give us a negative number, since it may be the tangent

of the obtuse angle between the two lines.
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Hence, if we are interested only in the acute angle, since tan(180◦−θ) = − tanθ, we can

take the absolute value and say that, if γ is the acute angle between the two lines, then

tanγ=
∣∣∣∣ m1 −m2

1+m1m2

∣∣∣∣,
provided the lines are not perpendicular.

Example

Find, to the nearest degree, the acute angle between the lines y = 2x −1 and y = 3x +4.

Solution

Here m1 = 2 and m2 = 3. So, if θ is the acute angle between the two lines, we have

tanθ =
∣∣∣∣2−3

1+6

∣∣∣∣= 1

7

and therefore θ ≈ 8◦.

Exercise 14

Find the two values of m such that the angle between the lines y = mx and y = 2x is 45◦.

What is the relationship between the two lines you obtain?

If we define the angle between two curves at a point of intersection to be the angle be-

tween their tangents at that point, then the above formula — along with some differential

calculus — can be used to find that angle.

Radian measure

The measurement of angles in degrees goes back to antiquity. It may have arisen from the

idea that there were roughly 360 days in a year, or it may have arisen from the Babylonian

penchant for base 60 numerals. In any event, both the Greeks and the Indians divided

the angle in a circle into 360 equal parts, which we now call degrees. They further divided

each degree into 60 equal parts called minutes and divided each minute into 60 seconds.

An example would be 15◦22′16′′. This way of measuring angles is very inconvenient and

it was realised in the 16th century (or even before) that it is better to measure angles via

arc length.

We define one radian, written as 1c (where the c refers to circular measure), to be the

angle subtended at the centre of a unit circle by a unit arc length on the circumference.
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y

x
O

1�

(0,1)

(0,–1)

(1,0)(–1,0)

1

Definition of one radian.

Since the full circumference of a unit circle is 2π units, we have the conversion formula

360◦ = 2π radians

or, equivalently,

180◦ =π radians.

So one radian is equal to
180

π
degrees, which is approximately 57.3◦.

Since many angles in degrees can be expressed as simple fractions of 180, we use π as a

basic unit in radians and often express angles as fractions of π. The commonly occurring

angles 30◦, 45◦ and 60◦ are expressed in radians respectively as
π

6
,
π

4
and

π

3
.

Example

Express in radians:

1 135◦ 2 270◦ 3 100◦.

Solution

1 135◦ = 3×45◦ = 3π

4

c

2 270◦ = 3×90◦ = 3π

2

c

3 100◦ = 100π

180

c

= 5π

9

c

Note. We will often leave off the c, particularly when the angle is expressed in terms of π.
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Students should have a deal of practice in finding the trigonometric functions of angles

expressed in radians. Since students are more familiar with degrees, it is often best to

convert back to degrees.

Example

Find

1 cos
4π

3
2 sin

7π

6
3 tan

5π

4
.

Solution

1 cos
4π

3
= cos240◦ =−cos60◦ =−1

2

2 sin
7π

6
= sin210◦ =−sin30◦ =−1

2

3 tan
5π

4
= tan225◦ = tan45◦ = 1

Note. You can enter radians directly into your calculator to evaluate a trigonometric func-

tion at an angle in radians, but you must make sure your calculator is in radian mode.

Students should be reminded to check what mode their calculator is in when they are

doing problems involving the trigonometric functions.

Arc lengths, sectors and segments

Measuring angles in radians enables us to write down quite simple formulas for the arc

length of part of a circle and the area of a sector of a circle.

In any circle of radius r , the ratio of the arc length ` to the circumference equals the ratio

of the angle θ subtended by the arc at the centre and the angle in one revolution.

O

rθ

ℓ
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Thus, measuring the angles in radians,

`

2πr
= θ

2π

=⇒ `= rθ.

It should be stressed again that, to use this formula, we require the angle to be in radians.

Example

In a circle of radius 12 cm, find the length of an arc subtending an angle of 60◦ at the

centre.

O
12 cm

60 º

Solution

With r = 12 and θ = 60◦ = π

3
, we have

`= 12× π

3
= 4π≈ 12.57 cm.

It is often best to leave your answer in terms of π unless otherwise stated.

We use the same ratio idea to obtain the area of a sector in a circle of radius r containing

an angle θ at the centre. The ratio of the area A of the sector to the total area of the circle

equals the ratio of the angle in the sector to one revolution.

Thus, with angles measured in radians,

A

πr 2 = θ

2π

=⇒ A = 1

2
r 2θ.

The arc length and sector area formulas given above should be committed to memory.
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Example

In a circle of radius 36 cm, find the area of a sector subtending an angle of 30◦ at the

centre.

Solution

O

36 cm
30 º

With r = 36 and θ = 30◦ = π

6
, we have

A = 1

2
×362 × π

6
= 108π cm2.

As mentioned above, in problems such as these it is best to leave your answer in terms

of π unless otherwise stated.

The area As of a segment of a circle is easily found by taking the difference of two areas.

O
r

θ

In a circle of radius r , consider a segment that subtends an angle θ at the centre. We can

find the area of the segment by subtracting the area of the triangle (using 1
2 ab sinθ) from

the area of the sector. Thus

As = 1

2
r 2θ− 1

2
r 2 sinθ = 1

2
r 2(θ− sinθ).
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Example

Find the area of the segment shown.

O

418 º

Solution

With r = 4 and θ = 18◦ = 18π

180
= π

10
, we have

As = 1

2
×42 ×

( π
10

− sin
π

10

)
≈ 0.041.

Exercise 15

Around a circle of radius r , draw an inner and outer hexagon as shown in the diagram.

By considering the perimeters of the two hexagons, show that 3 ≤π≤ 2
p

3.

Summary of arc, sector and segment formulas

Length of arc `= rθ

Area of sector A = 1
2 r 2θ

Area of segment A = 1
2 r 2(θ− sinθ)
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Solving trigonometric equations in radians

The basic steps for solving trigonometric equations, when the solution is required in ra-

dians rather than degrees, are unchanged. Indeed, it is sometimes best to find the solu-

tion(s) in degrees and convert to radians at the end of the problem.

Example

Solve each equation for 0 ≤ x ≤ 2π:

1 cos x =−1
2 2 sin3x = 1 3 4cos2 x +4sin x = 5.

Solution

1 Since cos60◦ = 1
2 , the related angle is 60◦. The angle x could lie in the second or third

quadrant, so x = 180◦ − 60◦ or x = 180◦ + 60◦. Therefore x = 120◦ or x = 240◦. In

radians, the solutions are x = 2π

3
,

4π

3
.

2 Since sin
π

2
= 1, the related angle is

π

2
. Since x lies between 0 and 2π, it follows that

3x lies between 0 and 6π. Thus

3x = π

2
, 2π+ π

2
, 4π+ π

2

= π

2
,

5π

2
,

9π

2
.

Hence x = π

6
,

5π

6
,

3π

2
.

3 In this case, we replace cos2 x with 1− sin2 x to obtain the quadratic

4(1− sin2 x)+4sin x = 5

=⇒ 4sin2 x −4sin x +1 = 0.

This factors to (2sin x −1)2 = 0 and so sin x = 1
2 . In the given range, this has solutions

x = 30◦,150◦. So, in radians, the solutions are x = π

6
,

5π

6
.

Graphing the trigonometric functions

In the module Trigonometric functions (Year 10), we drew the graphs of the sine and

cosine functions, marking the θ-axis in degrees. Using sin30◦ = 0.5 and sin60◦ ≈ 0.87, we

drew up a table of values and plotted them.
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y

1

0.87

0.5

–0.5

–0.87

–1

0
30 60 90 120 150 180 210 240 270 300 330 360

y = sin θ

θ

y

1

0.87

0.5

–0.5

–0.87

–1

0
30 60 90 120 150 180 210 240 270 300 330 360

θ

y = cos θ

These graphs are often referred to by physicists and engineers as sine waves.

From now on, we will use radians as the unit on the θ-axis and so we have the following

graphs for sine and cosine.

0

1

–1

y = sin θ
θ

2
23

2

y
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0

1

–1

y = cos θ
θ

2
23

2

y

Symmetries of the sine graph

The graph of y = sinθ has many interesting symmetries.

The model employing the unit circle helps to elucidate these. The sine of the angle θ is

represented by the y-value of the point P on the unit circle. Since sinθ = sin(π−θ), we

can mark two equal intervals on the following sine graph.

y

x θ
θO 1–1

1

–1

y
1

–1

 

θ

θ

y = sin θ

2

θ = 2

θ

Hence, between 0 and π, the graph of y = sinθ is symmetric about θ = π

2
.

Similarly, between π and 2π, the graph is symmetric about θ = 3π

2
.
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y

x θ
O 1–1

1

–1

y
1

–1

 

y = sin θ

2

 

+ θ

 

2 θ  

+ θ 2 θ

3
2θ =

Finally, the graph possesses a rotational symmetry about θ = π as the following diagram

demonstrates.

y

x θ
θ

θ
O 1–1

1

–1

y
1

–1

 

y = sin θ

2

 
 

 

2 θ

2 θ

All these observations are summarised by the following diagram. This symmetry dia-

gram illustrates the related angle and the quadrant sign rules, as well as the symmetries

discussed above.

θ
θ

y
1

–1

 

y = sin θ

2

 

2 θ
 

θ

 + θ

Symmetries of the sine graph.
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The extended sine graph

The values of sine repeat as we move through an angle of 2π, that is,

sin(2π+x) = sin x.

We say that the function y = sin x is periodic with period 2π.

Thus, the graph may be drawn for angles greater than 2π and less than 0, to produce the

full (or extended) graph of y = sin x.

The graph of y = sin x from 0 to 2π is often referred to as a cycle.

0

–1

–0.5

x

y
1

y = sin x

–4

0.5

–3 –2 – 432

Note that the extended sine graph has even more symmetries. There is a translation

(by 2π) symmetry, a reflection symmetry about any odd multiple of π
2 and a rotational

symmetry about any even multiple of π2 .

Exercise 16

Sketch the graph of y = cos x, for −4π≤ x ≤ 4π.

Period, amplitude and phase shift

The more general form for the sine graph is

y = A sin(nx +α),

where A, n and α are constants and A > 0. What is the effect of varying the values of A, n

and α?

Changing α shifts the graph along the x-axis. If α> 0, then the basic sine graph moves to

the left and, if α< 0, it moves to the right. This is sometimes referred to as a phase shift.
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For example, we can see from the following graph that sin
(
x − π

2

)=−cos x.

0

–1

x

2
3
2

y

1

–3
2

–
2

y = sin (x –    )2

Changing the value of A stretches the y-values from the x-axis. The sine graph y = sin x

has a maximum of 1 and a minimum of −1. Hence the graph of y = A sin x (for a fixed

A > 0) has a maximum of A and a minimum of −A. The number A is referred to as the

amplitude. Trigonometric graphs are used to represent the current in an AC circuit over

a time period, and so the amplitude gives the maximum and minimum values of the

current.

Changing the value of n stretches the graph in the x-direction. The graph of y = sin x, for

0 ≤ x ≤ 2π, represents one cycle of the sine curve, and we say that the period of the graph

is 2π. This means that one cycle of the graph occurs over an interval of 2π. Changing

n alters the period of the graph. For example, if we draw the graph of y = sin2x, for

0 ≤ x ≤ 2π, we obtain two cycles of the graph and so the period becomes π, since one

cycle of the graph occurs over an interval of length π.

0

–1

x

2
3
2

y

1

–

y = sin 2x

–3
2

–
2

In general, the period of the graph of y = sinnx is given by

Period = 2π

n
.



{40} • Trigonometric functions and circular measure

Example

Sketch the graph of y = 3sin4x, for −2π≤ x ≤ 2π.

Solution

The amplitude of the graph is 3 and the period is
2π

4
= π

2
.

The easiest way to draw the graph is to draw one cycle of a sine curve, with amplitude 3,

and mark the end point as π
2 . We can then extend the graph using periodicity to the

interval −2π≤ x ≤ 2π.

0

–1

–2

–3

3

2

1

x2
3
2

y

–

y = 3sin 4x

4
3
4

5
4

7
4

2
–
4

–3
4

–5
4

–7
4

–3
2

–
2

Cosine graphs of the form y = A cos(nx +α) can be drawn by following the principles

outlined above for sine graphs.

Exercise 17

Sketch the graph of y = 2cos3x, for −3π≤ x ≤ 3π.

The graph of tan x

The function tan x has a very different kind of graph to those for the sine and cosine

functions. The period of tan x is π, rather than 2π, and the amplitude is not defined. The

tangent function is not defined at x =±π
2 , nor at any odd integer multiple of these values.

As x approaches π
2 from the left, the value of tan x increases without bound. Since tan is

an odd function, as x approaches −π
2 from the right, tan x decreases without bound.
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0

–1

–2

–3

3

2

1

x
2

y y = tan x

–
2

–3
2

3
2

–2 2–

The period of the graph of y = tannx is given by
π

n
.

Links forward

Multiple angles

The double angle formulas can be extended to larger multiples. For example, to find

cos3θ, we write 3θ as 2θ+θ and expand:

cos3θ = cos(2θ+θ) = cos2θ cosθ− sin2θ sinθ.

We can now apply the double angle formulas to obtain

cos3θ = (
cos2θ− sin2θ

)
cosθ−2sinθ cosθ sinθ = cos3θ−3sin2θ cosθ.

Replacing sin2θ with 1−cos2θ, we have

cos3θ = 4cos3θ−3cosθ.

Exercise 18

Use the method above to find a formula for sin3θ.

A more general approach is obtained using complex numbers. The complex number i is

defined by i 2 =−1.

De Moivre’s theorem says that, if n is a positive integer, then(
cosθ+ i sinθ

)n = cosnθ+ i sinnθ.

Hence, for any given n, we can expand (cosθ+ i sinθ)n using the binomial theorem and

equate the real and imaginary parts to find formulas for cosnθ and sinnθ.
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For example, in the case of n = 3,(
cosθ+ i sinθ

)3 = cos3θ+ i sin3θ

and (
cosθ+ i sinθ

)3 = cos3θ+3i cos2θ sinθ−3cosθ sin2θ− i sin3θ.

Equating real and imaginary parts, plus some algebraic manipulation, will produce the

triple angle formulas.

Adding waves

We can add together a sine and a cosine curve. Their sum can be obtained graphically

by adding the y-values of the two curves. It turns out that, if the waves have the same

period, this will produce another trigonometric graph with a change in amplitude and a

phase shift. Physically, this is called superimposing one wave with another.

This can also be done algebraically. For example, to add sin x and
p

3cos x, we proceed

as follows. Divide their sum by
√

12 + (
p

3)2 = 2, so

sin x +p
3cos x = 2

(
1

2
sin x +

p
3

2
cos x

)
.

This looks a little like the expansion sin(x +α) = sin x cosα+cos x sinα. We thus equate

cosα= 1

2
and sinα=

p
3

2
, which implies that α= π

3
. Hence

sin x +p
3cos x = 2sin

(
x + π

3

)
.

The new wave has amplitude 2 and a phase shift of
π

3
to the left.

–0.5

–1

–2

–1.5

2

1

0 x

y

y = sin x

2–

1.5

0.5

y =       cos x3√

y = 2sin(x +    )3
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In general, the same method will work to add a sin x+b cos x, in which case we divide out

by
p

a2 +b2.

Exercise 19

Express 3cos x −4sin x in the form A sin(x +α).

Waves such as the square wave and the saw-tooth wave, which arise in physics and en-

gineering, can be approximated using the sum of a large number of waves — this is the

study of Fourier series, which is central to much of modern electrical engineering and

technology.

The following square wave is the graph of the function with rule

1

2
+ 2

π
cos x − 2

3π
cos3x + 2

5π
cos5x −·· · = 1

2
+ 2

π

∞∑
n=1

sin nπ
2

n
cosnx.

0
x

y

The t formulas

Introducing the parameter t = tan
θ

2
turns out to be a very useful tool in solving certain

types of trigonometric equations and also in finding certain integrals involving trigono-

metric functions. The basic idea is to relate sinθ, cosθ and even tanθ to the tangent of

half the angle. This can be done using the double angle formulas.

We let t = tan
θ

2
and so we can draw the following triangle with sides 1, t ,

p
1+ t 2.

1

t
1 + t2√

θ
2
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Now sin2α= 2sinαcosα, so replacing 2α with θ we have

sinθ = 2sin
θ

2
cos

θ

2
.

From the triangle, we have

sinθ = 2× tp
1+ t 2

× 1p
1+ t 2

= 2t

1+ t 2 .

This is referred to as the t formula for sinθ.

Exercise 20

Use the geometric method above to derive the t formula

cosθ = 1− t 2

1+ t 2

and deduce that tanθ = 2t

1− t 2 , for t 6= ±1.

Exercise 21

The geometric proof of the t formula for sinθ given above assumes that the angle θ
2 is

acute. Give a general algebraic proof of the formula.

One application of the t formulas is to solving certain types of trigonometric equations.

Example

Solve cosθ+ sinθ = 1
2 , for 0◦ ≤ θ ≤ 360◦, correct to one decimal place.

Solution

Put t = tan
θ

2
. Then

1− t 2

1+ t 2 + 2t

1+ t 2 = 1

2
.

This rearranges to 3t 2−4t −1 = 0, whose solutions are t = 2±p
7

3
≈ 1.549,−0.215. Taking

the inverse tangents (in degrees) and doubling, we obtain the solutions θ ≈ 114.3◦,335.7◦

in the given range.

Note. Some care is required when using the t formulas to find solutions of an equation,

as there may be a solution θ for which tan θ
2 is undefined.
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History

Some brief descriptions of the Greek approach to trigonometry via chords of circles were

given in the module Further trigonometry (Year 10). The chord equivalents of the double

angle formulas and the sine and cosine expansions, sin(A+B) and cos(A+B), were found

by Hipparchos (180–125 BCE) and Ptolemy (c. 90–168 CE).

The Indian mathematicians Aryabhata (476–550 CE) and Bhaskara I (7th century) re-

worked much of the Greek chord ideas and introduced ratios that are essentially the

same as our sine and cosine. They were able to tabulate the values of these ratios. In

particular, Bhaskara I used a formula equivalent to

sin x ≈ 16x(π−x)

5π2 −4x(π−x)
, for 0 ≤ x ≤ π

2
,

to produce tables of values.

In the 12th century, Bhaskara II discovered the sine and cosine expansions in roughly

their modern form.

Arabic mathematicians were also working in this area and, in the 9th century, Muham-

mad ibn Musa al-Khwarizmi produced sine and cosine tables. He also gave a table of

tangents.

The first mathematician in Europe to treat trigonometry as a distinct mathematical dis-

cipline was Regiomontanus. He wrote a treatise called De triangulis omnimodus in 1464,

which is recognisably ‘modern’ in its approach to the subject.

The history of the trigonometric functions really begins after the development of calculus

and was largely developed by Leonard Euler (1707–1783). The works of James Gregory

in the 17th century and Colin Maclaurin in the 18th century led to the development of

infinite series expansions for the trigonometric functions, such as

sinθ = θ− θ3

3!
+ θ5

5!
−·· · .

It was Euler who discovered the remarkable relationship between the exponential and

trigonometric functions

e iθ = cosθ+ i sinθ,

which is nowadays taken as a definition of e iθ.
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Answers to exercises

Exercise 1

Coordinates of P θ sinθ cosθ tanθ

(1,0) 0◦ 0 1 0

(0,1) 90◦ 1 0 undefined

(−1,0) 180◦ 0 −1 0

(0,−1) 270◦ −1 0 undefined

(1,0) 360◦ 0 1 0

Exercise 2

a sin330◦ =−sin30◦ =−1

2

cos330◦ = cos30◦ =
p

3

2

tan330◦ =− tan30◦ =− 1p
3

b If θ is in the fourth quadrant, the related angle is 360◦−θ.

Exercise 3

a sin210◦ =−1

2
b cos315◦ = 1p

2
c tan150◦ =− 1p

3

Exercise 4

a In 4BC P , we have h = a sinB . In 4AC P , we have h = b sin A.

Hence a sinB = b sin A =⇒ a

sin A
= b

sinB
.

b In 4BC M , we have h = a sinB . In 4AC M , we have h = b sin(180◦− A) = b sin A.

Again it follows that
a

sin A
= b

sinB
.

Exercise 5

Using A = 1
2 ab sinθ, we have

5 = 1

2
×5×4× sinθ =⇒ sinθ = 1

2

=⇒ θ = 30◦,150◦.
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5 cm
5 cm

4 cm 4 cm

150 º30 º

Exercise 6
1

2
ac sinB = 1

2
bc sin A =⇒ a sinB = b sin A =⇒ a

sin A
= b

sinB

Exercise 7

LHS = 1

secθ+ tanθ
= 1

1
cosθ + sinθ

cosθ

= cosθ

1+ sinθ
= RHS

Exercise 8

The double angle formula for cosine gives cos30◦ = 1−2sin2 15◦. So

sin2 15◦ = 1

2

(
1−cos30◦)

= 1

2

(
1−

p
3

2

)
= 1

4

(
2−p

3
)
.

Hence sin15◦ = 1
2

√
2−p

3. (Take the positive square root, as sin15◦ is positive.)

An alternative method is to start from sin30◦ = 2sin15◦ cos15◦. Proceed by squaring both

sides of the equation and using the Pythagorean identity.

Exercise 9

Using the double angle formulas, we have

tan2θ = sin2θ

cos2θ
= 2sinθ cosθ

cos2θ− sin2θ
.

If we assume that tanθ is defined, then we can divide the numerator and denominator

by cos2θ to obtain

tan2θ = 2 sinθ
cosθ

1− sin2 θ
cos2 θ

= 2tanθ

1− tan2θ
.

Note that tan2θ is defined if and only if cos2θ = cos2θ− sin2θ 6= 0, in which case tanθ

cannot equal ±1.
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Exercise 10

sin(A+B) = cos
(
90◦− (A+B)

)
= cos

(
(90◦− A)−B

)
= cos(90◦− A) cosB + sin(90◦− A) sinB

= sin A cosB +cos A sinB.

Replacing B with −B gives the remaining formula.

Exercise 11

a These follow easily by considering the triangles BC D and AC D .

b Area of 4ABC = area of 4BC D + area of 4AC D .

So 1
2 ab sin(α+β) = 1

2 ay sinα+ 1
2 by sinβ.

c Substitute y = b cosβ into the first term on the right-hand side of the equation from

part (b) and y = a cosα into the second term. Then divide both sides by 1
2 ab to

obtain the sine expansion.

Exercise 12

tan15◦ = tan(45◦−30◦) =
1− 1p

3

1+ 1p
3

=
p

3−1p
3+1

(By multiplying both the numerator and the denominator by
p

3−1, this answer can be

simplified to tan15◦ = 2−p
3.)

Exercise 13

Put θ = 67 1
2
◦

into the double angle formula:

tan135◦ = 2t

1− t 2 =⇒ −1 = 2t

1− t 2

=⇒ t 2 −2t −1 = 0

=⇒ t = 1±
p

2.

Hence, tan67 1
2
◦ = 1+p

2.

(Here we take the positive square root, since tan67 1
2
◦

is positive.)

Exercise 14

With m2 = 2 and γ= 45◦, we have

1 =
∣∣∣∣ m −2

1+2m

∣∣∣∣.
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Hence m −2 = 2m +1 or m −2 =−(2m +1), giving m =−3 and m = 1
3 .

The two lines obtained are perpendicular.

Exercise 15

Since the angles subtended at the centre of the hexagon are each 60◦, we can divide the

inner and outer hexagons into equilateral triangles. The side length of the inner triangles

is r . After applying Pythagoras’ theorem, we find that the side length of each triangle in

the outer hexagon is 2p
3

r . Hence, comparing perimeters,

6r ≤ 2πr ≤ 6× 2p
3

r.

Dividing by 2r and simplifying gives the desired result.

Exercise 16

0

–1

x

y
1

y = cos x

–4 –3 –2 – 432

0.5

–0.5

Exercise 17

x

y y = 2cos 3x

3–3 0

–2

2

–8
3

–2 –4
3

–2
3

24
3

2
3

8
3
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Exercise 18

sin3θ = sin(2θ+θ)

= sin2θ cosθ+cos2θ sinθ

= 2sinθ cos2θ+ (
cos2θ− sin2θ

)
sinθ

= 2sinθ
(
1− sin2θ

)+ (
1−2sin2θ

)
sinθ

= 3sinθ−4sin3θ

Exercise 19

There are a number of ways to do this problem. We could begin by factoring out 5, but

we will do it as follows:

A sin(x +α) = A
(
sin x cosα+cos x sinα

)= 3cos x −4sin x.

Since this is an identity in x, we can equate coefficients and write

A sinα= 3 and A cosα=−4.

Squaring and adding these equations gives A = 5, and hence sinα = 3
5 and cosα = −4

5 .

So we can take α as an angle in the second quadrant and the calculator gives α≈ 143.1◦.

Hence 3cos x −4sin x = 5sin(x +α), with α≈ 143.1◦.

Exercise 20

The double angle formula for cosine gives cosθ = cos2 θ
2 − sin2 θ

2 . So, using the triangle

arising from t = tan θ
2 , we have

cosθ = 1

1+ t 2 − t 2

1+ t 2 = 1− t 2

1+ t 2 .

Exercise 21

Let α= θ
2 and t = tanα. Then

2t

1+ t 2 =
2sinα
cosα

1+ sin2α
cos2α

= 2sinα cosα

cos2α+ sin2α
= 2sinα cosα= sin2α= sinθ,

using the Pythagorean identity and the double angle formula for sine.
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