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Transformations

Assumed knowledge

• Familiarity with functions, including injective, surjective and inverse functions;

• Familiarity with linear equations, including solving simultaneous equations.

• Familiarity with vectors and 2£2 matrices, including position vectors and matrix mul-

tiplication and inverses;

• Familiarity with plane Euclidean geometry.

Motivation

Give me a place to stand and I will move the earth.

– Archimedes

As in many aspects of life, it’s often useful in mathematics to see things from different

perspectives. Changing your point of view involves some kind of transformation.

You see geometric transformations every minute of every day: whenever you walk around

an object, you see a rotation. When you see an image of an object, it is a projection. When

you move an object, you see a translation. When you look in a mirror, you see a reflection.

In this module we focus on transformations of the plane. Plane transformations encom-

pass a great deal of geometry, including rotations, reflections, projections, translations,

and many other operations.

We mostly focus on transformations of a very particular type: linear transformations.

Linear transformations form a narrow, but useful, class of plane transformations. We

will see how such transformations can be described by some relatively simple algebra.

Studying plane transformations brings together algebra and geometry in a coherent and

elegant way. We will see that the algebra of linear functions and matrices efficiently de-

scribes a wide array of geometric transformations.
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Content

Transformations of the plane

Not everything that is faced can be changed. But nothing can be changed

until it is faced. – James Baldwin

A plane transformation is just a function from the plane to itself, i.e. a function F :

R2 ! R2. Such an F takes a point (x, y) to another point, which we can denote (x

0, y

0)

or F (x, y).1 You can think of x, y as inputs to f , and x

0, y

0 as outputs of f .

By our definition, any function R2 !R2 whatsoever is a plane transformation. E.g.:

F (x, y) = (0,5), F (x, y) = (2x + y,5x °3y), F (x, y) = (x °2y +3,°4x +5y °6),

F (x, y) = (x

2 + y

3,e

y

3
p

x), F (x, y) = (bx yc, sin(x + y)).

(However, in this module we will not deal with functions as complicated as the last two.)

It’s not possible to draw a graph of a function F : R2 ! R2 in the same way we draw the

graph y = f (x) of a function f :R!R. For a function f :R!R, its graph consists of a plot

of all points (x, y) such that y = f (x). To draw a similar graph of a function F : R2 ! R2,

we would need to plot all (x, y, x

0, y

0) such that (x

0, y

0) = F (x, y), which would require four

coordinates — it would have to be drawn in four-dimensional space! As we will see,

however, there are other ways to visualise a plane transformation.

In this module, we will do the following.

• We will briefly examine some geometry, introducing a few examples of plane transfor-

mations arising from geometric operations.

• Then, we will examine some algebra of vectors and matrices, and discuss linear trans-

formations, which arise from this algebra.

• Next, we will examine some geometric transformations in depth: rotations, transla-

tions, projections, dilations, and more. We will investigate the relationship between

the geometry and algebra of these operations.

• Finally, we will discuss transformations of graphs, discussing what happens to a graph

y = f (x) when it is subject to a transformation.

• In the Links Forward section, we will discuss some further concepts such as deter-

minants, isometries, and how the ideas of this module can be generalised from the

2-dimensional plane to 3-dimensional space, and even to higher dimensions.

1 Note the primes on x

0, y

0 have nothing to do with derivatives!
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Warning regarding notation. Throughout this module, we often blur the distinction be-

tween a point (x, y) in the plane, and its position vector

2

4x

y

3

5. This is a slight abuse of

notation, but it may be useful, and we hope it will not be too confusing.

Geometric examples of transformations

Some transformations arise from very natural and intuitive geometric operations.

Identity

The laziest plane transformation of all is the one that does nothing. This transformation

is known as the identity function I :R2 !R2. It sends every point to itself, I (x, y) = (x, y).

x

y

I

x

0

y

0

A A

Rotations

P

X

X

0

¡

Given a point P in the plane, and an angle ¡,2 we can consider ro-

tating points around P by the angle ¡. Any point X can be rotated in

this way, giving rise to a plane transformation R2 !R2.

2 This is the Greek letter phi.
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x

y

Rotate

x

0
¡

A

P

A

0

P

Translations

Given a vector v, we can consider translating points by v. Any

point X can be moved along by the vector v to obtain a point

X

0, and in this way we obtain a plane transformation.

v

X

X

0

x

y

Translate

x

0

y

0

v

A

A

0

Projections

Given a line L in the plane, we can consider projecting points

onto L. From a point X , draw the line through X perpendic-

ular to L; the intersection of this line with L is the projection

X

0 of X onto L. Projecting all points of the plane onto L, we

obtain a plane transformation.

L

X

X

0
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x

y

Project

x

0

y

0

L

A

L

A

0

Exercise 1

Show that the projection X

0 of X onto L is the closest point on L to X .

Reflections

Take a line L and think of it as a mirror; we can then reflect

points in L. Given a point X not on L, suppose you are stand-

ing at X ; your reflection X

0 in L is where you appear to be

when you look in the mirror. Reflecting each point in this way

we obtain a plane transformation.

To find X

0, we can draw the line perpendicular to L through X ;

X

0 is the point on this perpendicular, on the other side of L, at

the same distance from L as X .

L

X

X

0

x

y

Reflect

x

0

y

0

L

A

L

A

0
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Dilations

Given a line L and a real number k, we can dilate points from

L by a factor k. From a point X not on L, once more we draw

the perpendicular from X to L. The dilation X

0 of X from L

with factor k is the point X

0 on the perpendicular which is k

times as far away from L as X is. In other words, if P is the foot

of the perpendicular from X to L, then
°°!
P X

0 = k

°°!
P X .

LX

X

0

P

1 : k

Again we have a plane transformation, which stretches the plane out from L by a factor

of k. Note that if k is positive, then X

0 lies on the same side of L as X ; if k is negative, then

X

0 lies on the opposite side of L from X .

x

y

Dilate

x

0

y

0

L

A

L

A

0

Linear transformations and matrices

We will now take a more algebraic approach to transformations of the plane.

As it turns out, matrices are very useful for describing transformations. Whenever we

have a 2£2 matrix of real numbers

M =

2

4a b

c d

3

5 ,

we can naturally define a plane transformation T

M

:R2 !R2 by

T

M

(v) = Mv.

That is, T

M

takes a vector v and multiplies it on the left by the matrix M . If v is the position

vector of the point (x, y), then

T

M

(v) = T

M

0

@

2

4x

y

3

5

1

A= M

2

4x

y

3

5=

2

4a b

c d

3

5

2

4x

y

3

5=

2

4ax +by

cx +d y

3

5
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or equivalently, T

M

(x, y) = (ax +by,cx +d y).

(Note that here we used the notation (x, y) and

2

4x

y

3

5 interchangeably; we will be doing

this throughout this module.)

As it turns out, matrices give us a powerful systematic way to describe a wide variety of

transformations: they can describe rotations, reflections, dilations, and much more.

Example

Let M =

2

41 2

3 7

3

5.

1 Write an expression for T

M

.

2 Find T

M

(1,0) and T

M

(0,1).

3 Find all points (x, y) such that T

M

(x, y) = (1,0).

Solution

1 T

M

(x, y) =

2

41 2

3 7

3

5

2

4x

y

3

5=

2

4 x +2y

3x +7y

3

5= (x +2y,3x +7y).

2 Using the formula from the previous part, T

M

(1,0) = (1,3) and T

M

(0,1) = (2,7)

3 We have T

M

(x, y) = (x +2y,3x +7y) = (1,0), hence the simultaneous equations

x +2y = 1, 3x +7y = 0.

Solving these equations yields x = 7, y =°3; and this is the only solution. So the only

point (x, y) such that T

M

(x, y) = (1,0) is (x, y) = (7,°3).

Note that T

M

(1,0) and T

M

(0,1) are precisely the columns of the matrix M . This is an

important fact, which we will discuss later.

While every matrix describes a plane transformation, not every plane transformation can

be described by a matrix. Matrices correspond to a specific type of plane transformation

which sends (x, y) to (ax +by,cx +d y), for some real numbers a,b,c,d .

A transformation T

M

arising from a matrix M obeys some “distributive laws”. For any

2£2 matrix M and vectors v and w in R2, it is true that

M (v+w) = Mv+Mw and hence T

M

(v+w) = T

M

(v)+T

M

(w).



A guide for teachers – Years 11 and 12 • {11}

Moreover, for any real number (scalar) c,

M (cv) = cMv and hence T

M

(cv) = cT

M

(v).

In fact, if a function F : R2 ! R2 satisfies these two distributive laws, then it must arise

from a matrix. Why? If F (v+w) = F (v)+F (w) and F (cv) = cF (v), then for any point (x, y),

F

2

4x

y

3

5= F

0

@

2

4x

0

3

5+

2

40

y

3

5

1

A= F

2

4x

0

3

5+F

2

40

y

3

5 (using F (v+w) = F (v)+F (w))

= xF

2

41

0

3

5+ yF

2

40

1

3

5 (using F (cv) = cF (v))

Letting F (1,0) = (a,c) and F (0,1) = (b,d) then, we have

F

2

4x

y

3

5= x

2

4a

c

3

5+ y

2

4b

d

3

5=

2

4ax +by

cx +d y

3

5=

2

4a b

c d

3

5

2

4x

y

3

5 ,

so F corresponds to a matrix.

Therefore, we have two equivalent ways to define linear transformations. A plane trans-

formation F is linear if either of the following equivalent conditions holds:

• F (x, y) = (ax +by,cx +d y) for some real a,b,c,d . That is, F arises from a matrix.

• For any scalar c and vectors v,w, F (cv) = cF (v) and F (v+w) = F (v)+F (w).

Exercise 2

Show that any linear transformation sends the origin to the origin.

The effect of a linear transformation

Suppose you are given a matrix M . You now know that M determines a linear transfor-

mation T

M

. But what does T

M

do, geometrically? We will now see a method to analyse

this question.

Let’s begin by restricting our attention to two vectors: (1,0) and (0,1). These two vectors

are sometimes called the standard basis for R2.

Multiplying any matrix M =

2

4a b

c d

3

5 by the standard basis vectors gives its columns:

M

2

41

0

3

5=

2

4a b

c d

3

5

2

41

0

3

5=

2

4a

c

3

5 and M

2

40

1

3

5=

2

4a b

c d

3

5

2

40

1

3

5=

2

4b

d

3

5 .
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So, just by looking at a matrix M , reading down its columns, you can see where T

M

sends

(1,0) and (0,1). Once you know where T

M

sends (1,0) and (0,1), you can use the “dis-

tributive” property of linear transformations to see where any other point goes.

For instance, if you want to know where T

M

sends (2,3), you could note that (2,3) =
2(1,0)+3(0,1), so that

T

M

(2,3) = 2T

M

(1,0)+3T

M

(0,1).

Hence T

M

(2,3) is given by 2 times the first column of M , plus 3 times the second column.

In the x y-plane we can consider the unit square, with vertices (0,0), (1,0), (0,1), (1,1).

Unit squares tiles the plane, giving a tessellation whose vertices are precisely the points

with integer coordinates. Where does T

M

send these points?

• T

M

sends the origin to the origin (exercise ??).

• T

M

sends (1,0) and (0,1) to the vectors given by the first and second columns of M .

• T

M

sends (1,1) = (1,0)+(0,1), to T

M

(1,0)+T

M

(0,1), the sum of the two columns of M .

• In general, T

M

sends (a,b) to aT

M

(1,0)+bT

M

(0,1).

(0,0) (1,0)

(0,1) (1,1)
T

M

(0,0) T

M

(1,0)

T

M

(0,1) T

M

(1,1)

So the unit square is sent by T

M

to a parallelogram. The distributive property implies

that the whole tessellation of the plane by unit squares is sent by T

M

to a tessellation of

the plane by parallelograms. We can then draw a picture of the entire transformation T

M

.

x

y

T

M

x

0

y

0

Let us now use these ideas to describe some specific linear transformations.
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Example

Let M =

2

41 1

0 1

3

5. Describe the linear transformation T

M

geometrically.

Solution

Reading the columns of T

M

tells us that T

M

(1,0) = (1,0) and T

M

(0,1) = (1,1); the trans-

formation T

M

thus turns the unit square into a parallelogram with base 1 and height 1

as shown. This transformation is called a shear.

x

y

T

M

x

0

y

0

In the above figure, we draw a parallelogram (shaded grey) with two vectors v = T

M

(1,0)

(green) and w = T

M

(0,1) (blue) tail-to-tail at the origin. We call this the parallelogram

spanned by v and w.

Example

Let M =

2

41 0

0 °1

3

5. Describe the linear transformation T

M

geometrically.

Solution

Reading the columns of M , we have T

M

(1,0) = (1,0) and T

M

(0,1) = (0,°1). So T

M

fixes

(1,0) and “flips” (0,1) to its negative (0,°1). Thus vertical directions are “flipped”, so that

(x, y) is sent to (x,°y), and T

M

is reflection in the x-axis.

x

y

T

M

x

0

y

0

Note that in the two examples above, the parallelograms spanned by T

M

(1,0) and T

M

(0,1)

have different orientations. In the first example, if we consider sweeping around the ori-

gin, through the parallelogram, from T

M

(1,0) to T

M

(0,1), we go anticlockwise; in the sec-
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ond example, we go clockwise. Accordingly, we say the first parallelogram is positively

oriented, and the second is negatively oriented.

T

M

(1,0)

T

M

(0,1)

(0,0)

T

M

(1,0)

T

M

(0,1)

(0,0)

In the standard unit square, sweeping

around the origin from (1,0) to (0,1) goes

anticlockwise, so it is positively oriented.

So the first example preserved this orien-

tation, and the second example reversed

it. In general, we say a linear transfor-

mation preserves or reverse orientation ac-

cordingly as the parallelogram spanned

by T

M

(1,0) and T

M

(0,1) is positively or negatively oriented.

Exercise 3

For each matrix M below, describe the linear transformation T

M

geometrically.

2

4
1
2 °

p
3

2p
3

2
1
2

3

5 ,

2

47 0

0 7

3

5 ,

2

4°1 0

0 °1

3

5 ,

2

42 0

0 3

3

5 ,

2

40 1

1 0

3

5 .

Composing linear transformations and matrix multiplication

Let’s now suppose we have two matrices M , N representing two linear transformations

T

M

,T

N

. What happens if we apply one transformation then the other? What is the com-

position T

M

±T

N

?

Let M =

2

4a b

c d

3

5 and N =

2

4e f

g h

3

5. So

T

M

(x, y) = (ax +by,cx +d y) and T

N

(x, y) = (ex + f y, g x +hy).

Composing these two functions gives

T

M

±T

N

(x, y) = T

M

(T

N

(x, y)) = T

M

(ex + f y, g x +hy)

=
°
a(ex + f y)+b(g x +hy), c(ex + f y)+d(g x +hy)

¢

=
°
(ae +bg )x + (a f +bh)y, (ce +d g )x + (c f +dh)y

¢
.

Remembering that a,b,c,d ,e, f , g ,h are just real constants, this is another linear trans-

formation, and the corresponding matrix is

2

4ae +bg a f +bh

ce +d g c f +dh

3

5 .
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This matrix is precisely the product of the two matrices M and N :

M N =

2

4a b

c d

3

5

2

4e f

g h

3

5=

2

4ae +bg a f +bh

ce +d g c f +dh

3

5 .

We conclude that the composition of the linear transformations of M and N is the linear

transformation of M N , proving the following theorem.

Theorem

For any matrices M and N , T

M

±T

N

= T

M N

.

This theorem gives us a very quick way to compose linear transformations: just multiply

the corresponding matrices!

Example

Find the matrix for the composition g ± f of the two linear transformations f (x, y) =
(x + y, y) and g (x, y) = (y, x + y).

Solution

We have f = T

M

and g = T

N

where M =

2

41 1

0 1

3

5 and N =

2

40 1

1 1

3

5. So the matrix of the

composition g ± f = T

N

±T

M

= T

N M

is the product N M :

N M =

2

40 1

1 1

3

5

2

41 1

0 1

3

5=

2

40 1

1 2

3

5 .

Exercise 4

Show that if the linear transformation f (x, y) = (y,°x + y) is composed with itself six

times, the result is the identity transformation.

The identity transformation and identity matrix

Recall the identity transformation I : R2 ! R2 sends every point to itself, I (x, y) = (x, y).

We can now note I is a linear transformation, corresponding to the identity matrix

Id =

2

41 0

0 1

3

5 . In other words, TId = I .
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The inverse of a linear transformation and inverse matrices

Recall that a function has an inverse if and only if it is bijective, i.e. injective and surjec-

tive. (A function f : X ! Y is injective if x 6= y implies f (x) 6= f (y); and f is surjective if

its image is all of Y , i.e. for all y 2 Y there exists x 2 X such that f (x) = y .)

Some transformations of the plane are bijective, and some are not; so some have in-

verses, and others do not. As we proceed, we will see many examples of transformations

that have inverses, and many that don’t.

A bijective transformation F : R2 ! R2, has an inverse F

°1 : R2 ! R2. These functions F

and F

°1 “undo” each other. So if F (x) = y then F

°1(y) = x, and vice versa.

Recall that matrices can have inverses too. If

M =

2

4a b

c d

3

5 then M

°1 = 1
ad °bc

2

4 d °b

°c a

3

5 (provided ad °bc 6= 0).

We say M

°1 is the inverse of M because M and M

°1 multiply to give the identity.

Exercise 5

Verify that M M

°1 = M

°1
M = Id.

If we compose the linear transformations T

M

and T

M

°1 , we obtain the identity:

T

M

±T

M

°1 = T

M M

°1 = TId = I , T

M

°1 ±T

M

= T

M

°1
M

= TId = I .

Hence T

M

and T

M

°1 undo each other; they are inverse transformations.

Example

What is the inverse of the transformation F :R2 !R2 given by F (x, y) = (x +3y, x +5y)?

Solution

The transformation F is linear and corresponds to the matrix

M =

2

41 3

1 5

3

5 , which has inverse M

°1 = 1
1 ·5°3 ·1

2

4 5 °3

°1 1

3

5=

2

4
5
2

°3
2

°1
2

1
2

3

5 .

The inverse of F = T

M

is then F

°1 = T

M

°1 ,

F

°1(x, y) =
µ

5
2

x ° 3
2

y,
°1
2

x + 1
2

y

∂
.
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To show that a function does not have an inverse, one can show that it is not injec-

tive, or that it is not surjective. In the following example we do both, giving two solu-

tions.
Example

Show that the transformation F :R2 !R2 given by F (x, y) = (x,0) has no inverse.

Solution

Solution 1. Since (for instance) F (0,0) = F (0,1) = (0,0), F is not injective. Hence F has

no inverse.

Solution 2. Any point in the image of F has second coordinate zero. So there is no (x, y)

such that (for instance) F (x, y) = (0,1). Hence F is not surjective, and has no inverse.

Exercise 6

Show that F :R2 !R2 given by F (x, y) = (x +2y,2x +4y) has no inverse.

The following example illustrates a useful technique for finding a linear transformation,

from its value at two points.

Example

Find a linear transformation R2 !R2 that maps (1,1) to (°1,4) and (°1,3) to (°7,0)

Solution

Let M be the matrix of the desired linear transformation. We have

M

2

41

1

3

5=

2

4°1

4

3

5 and M

2

4°1

3

3

5=

2

4°7

0

3

5 .

In fact, we can put these two equations together into a single matrix equation

M

2

41 °1

1 3

3

5=

2

4°1 °7

4 0

3

5

which we can then solve for M :

M =

2

4°1 °7

4 0

3

5

2

41 °1

1 3

3

5

°1

= 1
4

2

4°1 °7

4 0

3

5

2

4 3 1

°1 1

3

5= 1
4

2

4 4 °8

12 4

3

5=

2

41 °2

3 1

3

5

Hence the only such transformation is T

M

(x, y) = (x °2y,3x + y).
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Exercise 7

Find the linear transformation that sends (3,1) to (1,2) and (°1,2) to (2,°3)

Describing geometric transformations algebraically

We have now seen several geometric plane transformations. We have also seen how ma-

trices can describe some transformations (linear ones) in a simple algebraic way.

We now investigate these geometric operations from an algebraic point of view. We ask

whether, and how, they can be represented by matrices. This gives us a very interesting

way to relate everyday geometric operations to algebra.

Rotations

To everything — turn, turn, turn

– Pete Seeger

As discussed previously, given a point P in the plane, and an angle ¡, we can consider

the rotation around P by angle ¡. By convention, we measure angles anticlockwise and

in radians. We denote3 this rotation by

Rot
P,¡ : R2 !R2.

Note the following preliminary facts about rotations:

1 A rotation by angle 0 is just the identity transformation, as is rotation by 2º.

2 Rotation by ¡+2º is the same transformation as rotation by ¡.

3 Rotations of angles µ and ¡ about the same point P give a rotation of µ+¡ about P .

4 Any rotation is bijective. Indeed, a rotation by ¡ about P can be undone by rotating

by °¡, so the transformation Rot
P,¡ has inverse Rot

P, °¡.

That is,

Rot
P, 0 = Rot

P, 2º = I , Rot
P,¡+2º = Rot

P,¡,

Rot
P,¡ ±Rot

P, µ = Rot
P, µ+¡,

°
Rot

P,¡
¢°1 = Rot

P, °¡.

3 Please note: This is not a standard notation. We find it useful, but it may not be used by others!
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Exercise 8

Consider Rot
0,º/2, rotation about the origin by º/2. Show that Rot

0,º/2(x, y) = (°y, x).

Now, when we rotate around the origin 0, it turns out that Rot
0,¡ is a linear transforma-

tion. We will show why this is true, and find the corresponding matrix.

To show that Rot
0,¡ is linear, we will show that it satisfies the “distributive” laws

Rot
0,¡(cv) = cRot

0,¡(v) and Rot
0,¡ (v+w) = Rot

0,¡ (v)+Rot
0,¡ (w) ,

for any vectors v,w and real number c.

For the first law, note that the two vectors cv and v point in the same direction; cv is c

times longer than v. After rotation by ¡ about 0, the two resulting vectors still point in

the same direction and one is still c times longer than the other, so

Rot
0,¡ (cv) = cRot

0,¡(v) as desired.

x

y

cv

v

Rot
0,¡(cv)

Rot
0,¡(v)

¡

x

y

v

w

v+w

Rot
0,¡(v)

Rot
0,¡(w)

Rot
0,¡(v+w)

¡

For the second law, place v at the origin and place w head-to-tail with it, as shown, to

obtain the vector v+w. After rotating these vectors all by ¡, we have head-to-tail vectors

Rot
0,¡(v) and Rot

0,¡(w), summing to Rot
0,¡(v+w). Thus

Rot
0,¡(v)+Rot

0,¡(w) = Rot
0,¡(v+w) as desired.

Now that we know Rot
0,¡ is a linear transformation, we know that it corresponds to a

matrix: the next question is to find the matrix.

To find the matrix, consider where the standard basis vectors

(1,0) and (0,1) go under the rotation: this will give us the two

columns of the matrix, as discussed earlier.

Rotating (1,0) by an angle of ¡ about the origin, we obtain the

point (cos¡, sin¡), by elementary trigonometry in the right-

angle triangle shown. x

y

(1,0)

(cos¡, sin¡)

¡
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Exercise 9

Show that rotating (0,1) by ¡ about the origin yields the point (°sin¡,cos¡).

Thus we have found the columns of the matrix of Rot
0,¡. The matrix is

2

4cos¡ °sin¡

sin¡ cos¡

3

5 .

Such a matrix is often called a rotation matrix with angle ¡.

Example

Check directly that the inverse of the rotation matrix with angle ¡ is the rotation matrix

with angle °¡. Hence verify algebraically that
°
Rot

0,¡
¢°1 = Rot

0, °¡.

Solution

The inverse or the rotation matrix with angle ¡ is

2

4cos¡ °sin¡

sin¡ cos¡

3

5

°1

= 1

cos2¡+ sin2¡

2

4 cos¡ sin¡

°sin¡ cos¡

3

5=

2

4cos(°¡) °sin(°¡)

sin(°¡) cos(°¡)

3

5 ,

which is the rotation matrix with angle °¡. So the inverse of Rot
0,¡ is Rot

0, °¡.

Exercise 10

Show that the product of the rotation matrices with angles µ and ¡ is the rotation matrix

with angle µ+¡. Hence verify algebraically that Rot
0, µ ±Rot

0,¡ = Rot
0, µ+¡.

The formula for a rotation about the origin can

also be derived directly. We can do this using

polar coordinates. Instead of describing a point

by its Cartesian coordinates (x, y), we can use

its distance from the origin r , and its direction µ

from the origin. The angle µ is measured anti-

clockwise from the positive x-axis.

x

y

(r cosµ,r sinµ)

µ

r

Basic trigonometry in the triangle shown gives x = r cosµ and y = r sinµ. When we ap-

ply a rotation about the origin of angle ¡, the point (x, y) moves an angle of ¡ around

the origin, but its distance from the origin r is unchanged. Hence the point (x, y) =
(r cosµ,r sinµ) is mapped to (x

0, y

0) = (r cos(µ+¡),r sin(µ+¡)). We can now use the sine



A guide for teachers – Years 11 and 12 • {21}

and cosine addition formulae to rewrite this expression:

Rot
0,¡

2

4x

y

3

5=

2

4r cos(µ+¡)

r sin(µ+¡)

3

5=

2

4r cosµcos¡° r sinµ sin¡

r sinµcos¡+ r cosµ sin¡

3

5

=

2

4(cos¡)x ° (sin¡)y

(sin¡)x + (cos¡)y

3

5=

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

4x

y

3

5 .

This gives us a formula for Rot
0,¡ and the rotation matrix directly.

While a rotation about the origin gives a linear transformation, a rotation about any other

point is not linear, and hence is not given by a matrix. It is a plane transformation, but

not a linear one. You can prove this in the next exercise.

Exercise 11

If¡ is not a multiple of 2º, and P is not the origin, show that Rot
P,¡(0) 6= 0. Using exercise

??, conclude that Rot
P,¡(0) is not linear.

In the section on Translations, you can find a formula for a rotation about any point.

Translations

I like to move it, move it

– Reel 2 Real4

Picking up an object and moving it is a very familiar concept. As discussed previously,

given a vector v, we can consider the translation of the plane by the vector v. We denote

this transformation by5

Trans
v

:R2 !R2.

Let v = (a,b). When we translate a point, with position vector x = (x, y), by v, we simply

add the two vectors, as shown below. Thus

Trans
v

(x) = x+v, or equivalently, Trans
v

(x, y) = (x +a, y +b).

4 Not to be confused with R!R!

5 Again, this is not a standard notation.
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x

y

x

v

Trans
v

x

0

y

0

Trans
v

(x)

Translation by 0 does not move points very far! It is the identity: Trans
0

= I .

When v 6= 0, translation by v is not a linear transformation. The constant terms a,b in

the formula (x + a, y +b) are not allowed under our definition of linear transformation.

Another way to see that Trans
v

is not linear is to note that Trans
v

(0) = v, but a linear

transformation must take the origin 0 to 0 (exercise ??). (Transformations which allow

both linear and constant terms are called affine transformations.)

Exercise 12

Show that for any vector v, the translation Trans
v

: R2 ! R2 is bijective. Find the inverse

transformation, and give it an geometric interpretation.

Exercise 13

(This exercise may be easier after reading the rest of this module.) Let P = (a,b) be a point

in the plane with position vector v. Show that translation by °v, followed by rotation by

angle ¡ about the origin 0, followed by translation by v, gives the plane transformation

which rotates by angle ¡ about P . That is, show that

Trans
v

±Rot
0,¡ ±Trans°v

= Rot
P,¡.

Hence give a formula for Rot
P, µ(x, y), the rotation of (x, y) by angle µ around P = (a,b).

Projections

As discussed earlier, given a line L on the plane, we can consider the plane transforma-

tion which projects points onto L. We can denote6 this transformation by

Proj
L

: R2 !R2.

Such projections are very familiar from everyday life. If the plane is a map, L is a road,

and P is your position, then Proj
L

(P ) is the point on the road closest to you. If the line L

is horizontal, representing the ground, P is above ground, and the sun is directly above,

then Proj
L

(P ) is the shadow of P on the ground.

6 Again, beware that this notation is not standard.
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We have some preliminary facts about projections:

1 A projection Proj
L

is not surjective. Its image consists only of points on L.

2 A projection Proj
L

is not injective. Many points project to any given point of L.

3 If P is a point on L, then Proj
L

(P ) = P .

4 After projecting a point onto L, projecting onto L again has no further effect. That is,

Proj
L

±Proj
L

= Proj
L

.

A function f such that f ± f = f is called an idempotent. The last property above says a

projection is an idempotent.

Exercise 14

Give proofs of the above facts.

As it turns out, when the line L passes through the origin, Proj
L

is a linear transformation.

We will show why, and find the corresponding matrix.

First of all, suppose L is the x-axis. Projection onto L in this case just sets the y-coordinate

of a point to 0, and leaves the x-coordinate unchanged: Proj
x-axis(x, y) = (x,0). Similarly

Proj
y-axis(x, y) = (0, y). These are linear transformations:

Proj
x-axis

2

4x

y

3

5=

2

4x

0

3

5=

2

41 0

0 0

3

5

2

4x

y

3

5 , Proj
y-axis

2

4x

y

3

5=

2

40

y

3

5=

2

40 0

0 1

3

5

2

4x

y

3

5 .

Now suppose that L is any line through the origin, making an angle of¡with the positive

x-axis (as always, measured anticlockwise in radians), and let v = (x, y).

The key idea to calculate Proj
L

(v) is to perform the projection in several steps. We first

rotate the plane by °¡ about the origin. This rotates L to the x-axis, and rotates v too.

Then, we project onto the x-axis. Finally, we rotate back by ¡ around the origin. The

result is that v has been projected onto L. In symbols,

Proj
L

= Rot
0,¡ ±Proj

x-axis ±Rot
0,°¡.
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x

y

L

v

¡

Proj
L

x

0

y

0

Proj
L

(v)

¡

Rot
0, °¡

x

y

Rot
0,¡

Proj
x-axis

x

y

Why did we do this? Because we know all the matrices for the transformations on the

right hand side! The matrix for Proj
x-axis is given above, and

Rot
0,¡

2

4x

y

3

5=

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

4x

y

3

5 , Rot
0,°¡

2

4x

y

3

5=

2

4 cos¡ sin¡

°sin¡ cos¡

3

5

2

4x

y

3

5 .

Hence Proj
L

is linear, and its matrix is given by multiplying these matrices together:

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

41 0

0 0

3

5

2

4 cos¡ sin¡

°sin¡ cos¡

3

5=

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5 .

So projection onto L is a linear transformation corresponding to this matrix:

Proj
L

2

4x

y

3

5=

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5

2

4x

y

3

5

When¡= 0, this matrix agrees with our calculation for projection onto the x-axis.

Example

Let L be the line y = x. Find a formula for projection onto L.

Solution
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The line L passes through the origin and makes an angle¡=º/4 with the positive x-axis.

Hence Proj
L

is a linear transformation with matrix

2

4 cos2 º
4 sin º

4 cos º
4

sin º
4 cos º

4 sin2 º
4

3

5=

2

4
1
2

1
2

1
2

1
2

3

5 .

Therefore,

Proj
L

2

4x

y

3

5=

2

4
1
2

1
2

1
2

1
2

3

5

2

4x

y

3

5=

2

4
x+y

2
x+y

2

3

5 .

Exercise 15

Verify the above formula for projection onto y = x directly as follows. Given a point

(x0, y0), find the intersection of the line through this point with gradient °1, with the

line y = x. Conclude that Proj
L

(x0, y0) = ( x0+y0
2 , x0+y0

2 ) as above.

Exercise 16

What is the projection of the point (8,3) onto the line y = 2x?

An alternative derivation of the projection matrix is given in the following exercise.

Exercise 17

Let L be a line through the origin, making an angle ¡ with the positive real axis.

a Show that Proj
L

(cv) = cProj
L

(v) and Proj
L

(v+w) = Proj
L

(v)+Proj
L

(w), for any vectors

v,w and real number c.

b Show that the projection of the point (1,0) onto L is (cos2¡, sin¡cos¡), and the pro-

jection of (0,1) onto L is (sin¡cos¡, sin2¡).

c Conclude that Proj
L

is as given above.

It’s now possible to see some facts about projections from the algebraic properties of a

projection matrix.

Exercise 18

Let L be the line through the origin making an angle of ¡ with the positive x-axis.
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a Let P = (x, y) be a point on L. Show that

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5

2

4x

y

3

5=

2

4x

y

3

5 and hence Proj
L

(P ) = P.

b Show that Proj
L

±Proj
L

= Proj
L

by demonstrating that

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5

2

=

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5 .

While projection onto a line through the origin is linear, projection onto a line not through

the origin is not linear, and hence not given by a matrix, as you can prove now.

Exercise 19

If L does not pass through the origin, show Proj
L

is not linear. (Hint: exercise ??.)

Reflections

As discussed earlier, given a line L in the plane, we can consider the plane transformation

which reflects points in L. We denote7 this transformation by

Ref
L

:R2 !R2.

Here are some elementary facts about reflections:

1 Reflecting a point P in L, and reflecting it in L again, returns you to P . Hence,

Ref
L

±Ref
L

= I .

2 A reflection is bijective; in fact, the inverse of a reflection is itself :

(Ref
L

)°1 = Ref
L

.

3 In P is a point on L, then its reflection in L is just P again; Ref
L

(P ) = P .

A function f such that f ± f is the identity — equivalently, a function which is its own

inverse — is called an involution. So reflections are involutions.

When L is the x-axis, reflection in L fixes the x-coordinate and “flips” the y-coordinate.

Similarly, reflection in the y-axis “flips” the x-coordinate:

Ref
x-axis

2

4x

y

3

5=

2

4 x

°y

3

5=

2

41 0

0 °1

3

5

2

4x

y

3

5 , Ref
y-axis

2

4x

y

3

5=

2

4°x

y

3

5=

2

4°1 0

0 1

3

5

2

4x

y

3

5 .

7 Again, notation not standard.
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So reflection in either axis is a linear transformation.

In fact, for any line L passing through the origin, Ref
L

is a linear transformation. Letting

¡ be the angle between L and the positive x-axis, the corresponding matrix is given by

Ref
L

2

4x

y

3

5=

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

4x

y

3

5 .

In the following two exercises, we outline two methods to derive this result, similar to

those seen previously for projections.

Exercise 20

Show that rotation of angle °¡ about the origin 0, followed by reflection in the x-axis,

followed by rotation of ¡ about 0, is the same as reflection in L, i.e.

Ref
L

= Rot
0,¡ ±Ref

x-axis ±Rot
0,°¡.

Hence show that Ref
L

is a linear transformation and find its matrix.

Exercise 21 a Show that Ref
L

(cv) = cRef
L

(v) and Ref
L

(v+w) = Ref
L

(v)+Ref
L

(w), for

any vectors v, w and real number c. Hence show Ref
L

is a linear transformation.

b Show that the reflection of the point (1,0) in L is (cos(2¡),sin(2¡)), and that the re-

flection of (0,1) in L is (sin(2¡),°cos(2¡)).

c Hence find the matrix for Ref
L

.

Reflection in one particular line y = x has a useful effect: it swaps coordinates.

Example

Let L be the line y = x. Show that reflection in L takes a point (x, y) to (y, x).

Solution

Since L passes through the origin with angle ¡=º/4, Ref
L

is linear, with matrix

2

4cos º
2 sin º

2

sin º
2 °cos º

2

3

5=

2

40 1

1 0

3

5 .
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Thus

Ref
L

2

4x

y

3

5=

2

40 1

1 0

3

5

2

4x

y

3

5=

2

4y

x

3

5 as desired.

Exercise 22

Give a formula for reflection in the line y = 2x.

The following exercise gives an interesting relationship between reflections and projec-

tions, and leads to a third way to derive the reflection matrix.

Exercise 23

Let L be a line in the plane, and x a vector. Show that

Ref
L

(x) = 2Proj
L

(x)°x, or equivalently, Ref
L

= 2Proj
L

° I .

(Hint: Show x°Proj
L

(x) =°
°
Ref

L

(x)°Proj
L

(x)
¢
.)

(The above exercise holds for any line L — it need not pass through the origin!)

Exercise 24

Let L be a line through the origin, making an angle of ¡ with the positive x-axis. Using

the previous exercise, and the matrix for Proj
L

, deduce the formula for Ref
L

.

In the next exercise, we observe properties of reflections in the algebra of reflection ma-

trices.

Exercise 25

Let L be the line through the origin making an angle of ¡ with the positive x-axis.

a Let P = (x, y) be a point on L. Show that

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

4x

y

3

5=

2

4x

y

3

5 and hence Ref
L

(P ) = P.
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b Show that

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

= Id and hence show Ref
L

±Ref
L

= I .

We have seen that reflection in a line passing through the origin is linear. But, as with

projections, if L does not pass through the origin, then Ref
L

is not linear.

Exercise 26

Let d be a real number, and let L be the line x = d . Show that Ref
L

(x, y) = (2d °x, y).

(Hint: This can be shown directly, or by finding the projection and using exercise ??.)

Dilations

[R]ound the neck of the bottle was a paper label, with the words ‘DRINK ME’

beautifully printed on it in large letters...

Alice ventured to taste it, and finding it very nice, (it had, in fact, a sort of

mixed flavour of cherry-tart, custard, pine-apple, roast turkey, toffee, and

hot buttered toast,) she very soon finished it off...

‘What a curious feeling!’ said Alice; ‘I must be shutting up like a telescope.’

And so it was indeed: she was now only ten inches high

– Lewis Carroll, Alice’s Adventures in Wonderland

The plane transformation of a dilation has a similar effect to Alice’s “DRINK ME” potion

or “EAT ME” cake: it stretches or shrinks objects in the plane.

As discussed previously, given a line L and a real number k, we can consider the dilation

from L by factor k. We write8 this transformation as

Dil
L,k :R2 !R2.

The effect of such a dilation is to stretch lengths by a factor of k in the direction perpen-

dicular to L. If k is negative, then points are flipped to the other side of L.

Here are some basic properties of dilations:

1 Dilating from L with factor m, and then k, gives a dilation from L with factor km.

Dil
L,k ±Dil

L,m = Dil
L,km

8 Again, not a standard notation.
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2 If k 6= 0, then dilation from L with factor k is bijective. Its inverse is given by dilation

from L with factor 1/k.

°
Dil

L,k
¢°1 = Dil

L, 1
k

3 If P is a point on L, then for any k, Dil
L,k (P ) = P .

These facts are true even for dilation by negative factors.

We will analyse dilations similarly to projections and reflections. First, dilation from the

x-axis with factor k leaves the x-coordinate unchanged, and multiplies the y-coordinate

by k: Dil
x-axis,k (x, y) = (x,k y). Similarly for the y-axis, Dil

y-axis,k (x, y) = (kx, y). Hence

Dil
x-axis,k

2

4x

y

3

5=

2

4 x

k y

3

5=

2

41 0

0 k

3

5

2

4x

y

3

5 , Dil
y-axis,k

2

4x

y

3

5=

2

4kx

y

3

5=

2

4k 0

0 1

3

5

2

4x

y

3

5 .

Thus a dilation from either axis is a linear transformation.

In fact, for any line L passing through the origin and any real k, Dil
L,k is a linear transfor-

mation. Letting ¡ denote the angle L makes with the positive x-axis, we have

Dil
L,k

2

4x

y

3

5=

2

4 1+ (k °1)sin2¡ (1°k)sin¡cos¡

(1°k)sin¡cos¡ 1+ (k °1)cos2¡

3

5

2

4x

y

3

5 .

You can check that ¡= 0 or º/2 gives the matrices above for dilations in the axes.

Exercise 27 a Show that Dil
L,k = Rot

0,¡ ±Dil
x-axis,k ±Rot

0,°¡.

b Hence show that Dil
L,k is a linear transformation, with matrix as claimed above.

Example

Find a formula for dilation from the line y =°x with factor 3.

Solution

This line L has angle ¡=°º/4, so sin¡= °1p
2

and cos¡= 1p
2

. Hence

2

4 1+ (k °1)sin2¡ (1°k)sin¡cos¡

(1°k)sin¡cos¡ 1+ (k °1)cos2¡

3

5=

2

41+2 · 1
2 °2 · °1

2

°2 · °1
2 1+2 · 1

2

3

5=

2

42 1

1 2

3

5 ,

so the dilation is given by Dil
L,3(x, y) = (2x + y, x +2y).



A guide for teachers – Years 11 and 12 • {31}

Exercise 28

What is the dilation of the point (3,0) from the line y = 2x by factor 5?

Dilation matrices are more complicated than rotation, reflection or projection matrices.

Nonetheless, geometric properties of dilations are reflected in the algebra of dilation ma-

trices.

Exercise 29

Suppose k 6= 0 and L passes through the origin. Show that the matrices for dilation with

factor k and 1
k

from L are inverses. Hence conclude that
°
Dil

L,k
¢°1 = Dil

L, 1
k

.

Now for some particular values of k, dilation from a line L by factor k reduces to some

transformations we have seen previously.

1 Dilation from L with factor k =°1 flips every point to the corresponding point on the

opposite side of L: it is reflection in L.

2 Dilation from L with factor k = 0 is just projection onto L. “Stretching from L by factor

zero” simply projects points onto L.

3 Dilation from L with factor k = 1 leaves every point where it is.

In this sense, dilations form a generalisation of reflections and projections. We have

Dil
L,0 = Proj

L

, Dil
L,°1 = Ref

L

, Dil
L,1 = I .

Exercise 30 a Show that a dilation matrix with k = 0 is a projection matrix.

b Show that a dilation matrix with k =°1 is a reflection matrix.

Exercise 31

Use the fact that Dil
L,k ±Dil

L,m = Dil
L,km

to show the following.

a A reflection is an involution, i.e. (Ref
L

)2 = I .

b A projection is an idempotent, i.e.
°
Proj

L

¢2 = Proj
L

.

Exercise 32

We can characterise dilation, projection and reflection matrices as follows. Let M =2

4a b

c d

3

5. Show that the linear transformation corresponding to M is:

a a projection onto a line if and only if M is symmetric (i.e. M equals its transpose

M

T ), ad °bc = 0, and a +d = 1;
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b a reflection in a line if and only if M is symmetric, a +d = 0, and ad °bc =°1;

c a dilation if and only if M is symmetric and a +d = 1+ad °bc.

Spiral symmetries

A spiral symmetry is another interesting type of plane transformation. The spiral sym-

metry about a point P with factor r and angle µ is given by by dilating the whole plane by

a factor r from P , followed by a rotation by µ around P .

A spiral symmetry about the origin thus dilates a point (x, y) to (r x,r y) and then rotates

it by µ, to give the result

2

4cosµ °sinµ

sinµ cosµ

3

5

2

4r x

r y

3

5=

2

4r x cosµ° r y sinµ

r x sinµ+ r y cosµ

3

5=

2

4r cosµ °r sinµ

r sinµ r cosµ

3

5

2

4x

y

3

5 .

Example

Let M =

2

41 °1

1 1

3

5. Describe the linear transformation T

M

geometrically.

Solution

Form the parallelogram spanned by T

M

(1,0) = (1,1) and T

M

(0,1) = (°1,1), and view T

M

as in previous examples. We see T

M

sends the unit square to a square of side length
p

2,

rotated by º/4.

x

y

T

M

x

0

y

0

Thus T

M

is a spiral symmetry about the origin with factor r =
p

2 and angle µ = º/4;

indeed, M agrees with the matrix above for these values of r and µ:

M =

2

41 °1

1 1

3

5=

2

4
p

2cos º
4 °

p
2sin º

4
p

2sin º
4

p
2cos º

4

3

5=

2

4r cosµ °r sinµ

r sinµ r cosµ

3

5 .

One reason spiral symmetries are interesting is because they arise naturally with complex

numbers. Consider a complex number w in polar form w = r cisµ = r (cosµ+ i sinµ),
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where r = |w | and µ = arg w . As the complex numbers form the Argand plane C ª= R2,

we may regard multiplication by w as a plane transformation Mult
w

: R2 ! R2, given by

Mult
w

(z) = w z. That is, Mult
w

multiplies complex numbers by w . If z = x + yi then

w z = r (cosµ+ i sinµ)(x + yi ) =
°
r x cosµ° r y sinµ

¢
+ i

°
r x sinµ+ r y cosµ

¢
.

If we write out the real and imaginary parts as components of a vector, this means

Mult
w

2

4x

y

3

5=

2

4r x cosµ° r y sinµ

r x sinµ+ r y cosµ

3

5=

2

4r cosµ °r sinµ

r sinµ r cosµ

3

5

2

4x

y

3

5 .

This is exactly a spiral symmetry! Hence, the effect of multiplication by a complex num-

ber w on the complex plane is a spiral symmetry about the origin 0 with factor |w | and

angle argµ.

Transformations of graphs

A common type of problem asks you to transform a graph y = f (x), and find the equation

of the transformed graph. We illustrate with an example.

Example

Consider the graph y = x

2. Suppose the graph is dilated from the x-axis by a factor of 2,

and then translated 3 units to the right. What is the equation of the resulting graph?

Solution

The transformation given is Trans(3,0) ±Dil
x-axis,2. Denote by (x

0, y

0) the image of a point

(x, y) under this transformation. A point (x, y) is sent to (x,2y) by the dilation, and then

to (x +3,2y) by the translation, so (x

0, y

0) = (x +3,2y).

The original graph consists of points (x, y) such that y = x

2. Then it is transformed so

that (x, y) 7! (x

0, y

0) = (x +3,2y). We must find what equation is satisfied by x

0 and y

0.

Since x

0 = x +3 and y

0 = 2y , we have x = x

0 °3 and y = y

0/2. Thus y = x

2 implies

y

0

2
= (x

0 °3)2 or equivalently y

0 = 2(x

0 °3)2.

Thus, after the transformation, the graph consists of points (x, y) satisfying y = 2(x°3)2.

This is the equation of the transformed graph.

Exercise 33
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In the above example, suppose the translation was applied first, then the dilation. Would

the answer have been different?

The method in this example can be used generally to find an equation for a graph subject

to a transformation F :R2 !R2.

• Write (x

0, y

0) = F (x, y), and invert this equation to write x and y as expressions in terms

of x

0 and y

0.

• Substitute these expressions for x and y into the equation of the graph to obtain an

equation in x

0 and y

0.

• The transformed graph then consists of points (x

0, y

0) satisfying this equation in x

0 and

y

0. Dropping the primes, we have an equation in x and y for the transformed graph.

Example

Consider the graph y = e

x . Suppose the graph is dilated from the y-axis by a factor of 3,

reflected in the x-axis, and then translated 1 unit to the left and 2 units down. What is

the equation of the resulting graph?

Solution

A point (x, y) maps to (3x, y) under the dilation, then to (3x,°y) under the reflection,

then to (3x ° 1,°y ° 2) under the translation. So (x

0, y

0) = (3x ° 1,°y ° 2). Inverting,

we obtain x = x

0+1
3 and y = °y

0 ° 2. Substituting these expressions into y = e

x gives

°y

0 °2 = e

x

0+1
3 . So the equation of the transformed graph is

y =°2°e

1
3 (x+1).

Exercise 34

Suppose that in the above example the transformations were applied in the reverse order:

translations, then reflection, then dilation. Is the answer any different?

Commonly, a graph y = f (x) is transformed by a combination of dilations from the axes,

and a translation. The following theorem gives a formula for the resulting graph.

Theorem

Suppose the graph of y = f (x) is transformed by a dilation of factor k from the x-axis,

factor h 6= 0 from the y-axis, and then translated by the vector (c,d) (i.e. c units to the

right and d units up). The resulting graph has equation

y = k f

µ
1
h

(x °c)
∂
+d .
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Note that if there is a reflection in the x-axis, then we can take k to be negative; and if

there is a reflection in the y-axis, we can take h to be negative.

Proof

The point (x, y) is mapped to (hx,k y) under the dilations, then to (hx + c,k y +
d) under translation, so x

0 = hx + c and y

0 = k y +d . Inverting these equations

(assuming h,k 6= 0) gives

x = 1
h

°
x

0 °c

¢
and y = 1

k

°
y

0 °d

¢
.

The graph with equation y = f (x) is thus taken under the transformation to points

(x

0, y

0) such that

1
k

°
y

0 °d

¢
= f

µ
1
h

°
x

0 °c

¢∂
, which simplifies to y

0 = k f

µ
1
h

°
x

0 °c

¢∂
+d .

We may now drop the primes and we obtain the desired equation.

There is also the possibility k = 0. In this case dilation projects the graph to y = 0,

then translation takes it to y = d , agreeing with the formula.

While questions involving translations and dilations in the axes are most common, the

same method applies to general transformations.

Example

The hyperbola given by y = 1/x is rotated by 45± clockwise about the origin. What is the

equation of the resulting curve?

Solution

The point (x

0, y

0) is obtained by rotating (x, y) by °º
4 , and (x, y) is obtained by rotating

(x

0, y

0) by º
4 about the origin. Thus

2

4x

y

3

5=

2

4cos º
4 °sin º

4

sin º
4 cos º

4

3

5

2

4x

0

y

0

3

5=

2

4
1p
2

°1p
2

1p
2

1p
2

3

5

2

4x

0

y

0

3

5= 1
p

2

2

4x

0 ° y

0

x

0+ y

0

3

5 .

Hence the curve y = 1/x, or x y = 1, is mapped to points (x

0, y

0) such that

1
2

(x

0 ° y

0)(x

0+ y

0) = 1, that is, x

02 ° y

02 = 2.

Thus the equation of the rotated hyperbola is x

2 ° y

2 = 2.
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x

y

y = 1
x

Rotate

x

0

y

0

x

02 ° y

02 = 2

Exercise 35

Take the graph y = e

x . Consider either translating it k units to the left, or dilating it by e

k

from the x-axis. Show that either transformation yields the same graph.

Exercise 36

The unit circle x

2 + y

2 = 1 is dilated by a factor of 2 from the x-axis, then rotated by º/4

about the origin. What sort of curve results? What is its equation?

Exercise 37

Let f :R!R be a bijective function. Show that after reflection in the line y = x, the graph

of y = f (x) is sent to the graph of y = f

°1(x).

Links Forward

Areas and determinants

The determinant of a 2£2 matrix is given by

det

2

4a b

c d

3

5= ad °bc.

The determinant has a nice geometric interpretation in terms of areas, and this interpre-

tation can also be applied to linear transformations.

We discussed earlier (in “The effect of a linear transformation”) how two vectors v and

w can be used to construct a parallelogram, the parallelogram spanned by v and w. We

discussed how, if the matrix M =
h

v w

i
has v and w as its columns, then the linear

transformation T

M

sends the unit square to this parallelogram. We also discussed the

orientation of this parallelogram and how T

M

can preserve or reverse orientation.



A guide for teachers – Years 11 and 12 • {37}

We now ask: what is the area of this parallelogram? It is closely related to the determinant

of the matrix M .

For instance, if v = (1,0) and w = (0,1), then v and w span the

unit square, and these two vectors form the matrix

M =

2

41 0

0 1

3

5 , which has determinant 1.
x

y

v

w

Similarly, if v = (2,0) and w = (3,°5), then we obtain a paral-

lelogram with base length 2 and height 5, hence with area 10;

and the corresponding matrix is

M =

2

42 3

0 °5

3

5 , which has determinant °10.

The determinant equals the negative area. But in this case

the parallelogram is negatively oriented and the linear trans-

formation reverses orientation.

x

y

v

w

In fact, the determinant of M =
h

v w

i
gives the signed area of the parallelogram spanned

by v and w, i.e. positive or negative area according to orientation.

The linear transformation T

M

sends the unit square to this parallelogram, and in fact

takes the tessellation of the plane by unit squares by a tessellation by these parallelo-

grams. So unit squares of area 1 are taken to parallelograms of signed area det M . Thus

T

M

expands areas by a factor of |det M |, and preserves or reverses orientation accordingly

as det M is positive or negative. For any region R in the plane, its image T

M

(R) under T

M

has area |det M | times the area of R.

Exercise 38

In this exercise we prove that, if M =
h

v w

i
, then det M is signed area of the parallelo-

gram spanned by v and w. Let A(v,w) be this signed area.

a Show that for any real number k, A(v,w) = A(v,w+kv) and A(v,w) = A(v+kw,w).

b Show that A(v,w) =°A(w,v).

c Show that A

0

@

2

4a

0

3

5 ,

2

4b

d

3

5

1

A= ad and A

0

@

2

4a

c

3

5 ,

2

4b

0

3

5

1

A=°bc.

d Show that, if d 6= 0, then A

0

@

2

4a

c

3

5 ,

2

4b

d

3

5

1

A= A

0

@

2

4a ° bc

d

0

3

5 ,

2

4b

d

3

5

1

A= ad °bc.
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e Conclude that A(v,w) = det M , where M =
h

v w

i
.

Example

Find the determinant of the matrix corresponding to the rotation Rot
0, º3

ofº/3 about the

origin, and explain what this means for areas and orientations.

Solution

The corresponding rotation matrix (with ¡=º/3) is

M =

2

4cos¡ °sin¡

sin¡ cos¡

3

5=

2

4
1
2

p
3

2

°
p

3
2

1
2

3

5 , which has det M = 1.

Thus the linear transformation Rot
0,º/3 preserves areas and orientations.

In fact, any rotation preserves areas, so any rotation matrix has determinant 1. Simi-

larly, reflections preserve area, but reverse orientation, so reflection matrices have de-

terminant °1. Projections collapse all areas down to zero, so have determinant zero.

Exercise 39

Prove these facts. Show any rotation matrix has determinant 1, any projection matrix has

determinant 0, and any reflection matrix has determinant °1.

What about dilation? Dilation from a line L by factor k expands lengths by a factor of k

in the direction perpendicular to L, but leaves lengths unchanged in the direction of L.

Thus, areas expand by a factor of k.

Example

Let L be the line y = x. Find the determinant of the matrix corresponding to dilation

from L by a factor of 3. Explain what this means for areas and orientations.

Solution

Using the formula for a dilation matrix, with k = 3 and ¡=º/4, Dil
L,3 has matrix

2

4 1+ (k °1)sin2¡ (1°k)sin¡cos¡

(1°k)sin¡cos¡ 1+ (k °1)cos2¡

3

5=

2

4 2 °1

°1 2

3

5 which has determinant 3.

Hence Dil
L,k expands areas by a factor of 3, and preserves orientation.
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Exercise 40

Show that the determinant of a general dilation matrix is k.

Isometries

An isometry is a plane transformation which preserves lengths.

That is, a plane transformation F : R2 ! R2 is an isometry if,

for any points A and B in the plane, the distance between A

and B equals the distance between F (A) and F (B). A

B

F

F (A)

F (B)

Isometries are important types of transformations, as they preserve geometry. All lengths

must remain the same, and hence angles and areas must also remain the same.

Some of the transformations we have seen are isometries, and others are not.

Lemma

Any rotation is an isometry. That is, for any point P and any angle µ, Rot

P,µ is an isometry.

Proof

P

A

B

A

0

B

0
¡

Take two distinct points A and B . Let A

0,B

0

be their images under rotation. We must show

AB = A

0
B

0.

Suppose A,B are distinct from P . Consider tri-

angles PAB and PA

0
B

0. As A

0 is obtained from

A by a rotation about P , PA = PA

0. Similarly

PB = PB

0. Since A

0,B

0 are obtained by rotating

A,B by ¡ about P , \APB =\A

0
PB

0. Hence 4PAB

ª=4PA

0
B

0, so AB = A

0
B

0.

In the case A = P , we have A

0 = P so PB = PB

0 implies AB = A

0
B

0. The case B = P

is similar.

Exercise 41

Show that any translation or reflection is an isometry, but that any projection onto a line,

or dilation from a line by factor k 6=±1 is not an isometry.

An isometry must preserve areas, so if we have an isometry which is a linear transfor-

mation corresponding to a matrix M , then det M = ±1. However, the converse is not

true. There are transformations which preserve areas, but which are not isometries.
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Exercise 42

Let M =

2

42 0

0 1
2

3

5. Show that T

M

preserves areas, but is not an isometry.

If you compose two isometries, the result must be another isometry. It is interesting to

think abut what you get by composing various types of isometries.

For instance, composing a reflection in L with itself results in the identity. But what if we

take two reflections in different lines L1 and L2?

Example

Let L1 be the line x = 0, and L2 the line x = d . Show that reflection in L1 followed by L2 is

translation by (2d ,0).

Solution

We note that Ref
L1 (x, y) = (°x, y) and Ref

L2 (x, y) = (2d °x, y) (see exercise ??), so

Ref
L2 ±Ref

L1 (x, y) = Ref
L2 (°x, y) = (x +2d , y) = (x, y)+ (2d ,0),

which is translation by (2d ,0).

In general, if L1 and L2 are parallel, distance d apart, then the composition Ref
L2 ±Ref

L1

is a translation by distance 2d in a direction perpendicular to L1 and L2.

What if L1 and L2 intersect at a point P? Then it turns out that reflection in L1, followed

by reflection in L2, gives a rotation.

Example

Let L1 be the x-axis and L2 the line through the origin making an angle of ¡ with the

x-axis. Show Ref
L2 ±Ref

L1 is a rotation, and find its angle.

Solution

Denote points by polar coordinates (r,µ). Then reflection in L1 sends a point (r,µ) to

(r,°µ), and reflection in L2 sends (r,µ) to (r,2¡°µ). Performing the two reflections in

order sends (r,µ) 7! (r,°µ) 7! (r,µ+ 2¡). So the composition is a rotation by angle 2¡

about the origin:

Ref
L2 ±Ref

L1 = Rot
0, 2¡.
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Exercise 43

Give an alternative proof of this statement by showing that the product of the matrices

for reflection in L1 and L2 is a rotation matrix of angle 2¡.

If you compose a translation of some distance along a line L, with reflection in L, you

obtain a type of isometry known as a glide reflection.

x

y

Glide reflection

x

0

y

0

L

A

A

0

We have now seen many examples of isometries: rotations, translations reflections, glide

reflections, and the identity. We might ask if there are any others. The following theorem

says that there are not: we have now seen them all.

Theorem (Classification of isometries of the plane)

Suppose F : R2 ! R2
is an isometry. Then F is a rotation, translation, reflection, glide

reflection or the identity.

We will not prove this theorem. A proof can be found, for instance, in I. M. Yaglom,

Geometric Transformations I.

Three-dimensional and higher-dimensional transformations

All of our discussion in this module has been about two-dimensional transformations —

transformations of the plane. But much of our reasoning applies to three dimensions,

and even to higher dimensions!

Just as a plane transformation is a function F : R2 ! R2, a spatial transformation is a

function F : R3 ! R3. Just as a linear plane transformation is given by a 2£ 2 matrix, a

linear spatial transformation is given by a 3£3 matrix.
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In three dimensions, we can consider translations by 3-dimensional vectors, rotations

about a line, reflections in a plane, projections onto a plane, and dilations from a plane.

Similar methods apply as for the two-dimensional case. Just as there is a standard basis

{(1,0), (0,1)} of R2, there is a standard basis {(1,0,0), (0,1,0), (0,0,1)} of R3. A linear trans-

formation T

M

takes the three standard basis vectors to the three columns of the matrix

M . We can visualise T

M

as taking the tessellation of R3 by unit cubes, to a tessellation

of R3 by parallelepipeds (the 3-d version of parallelograms), where each parallelepiped is

spanned by the three column vectors of M . The determinant of M now gives the volume

expansion of T

M

; its sign again tells us if T

M

preserves or reverses orientation.

In essence, everything we have said in this module can be generalised to R3. And in

principle it can be generalised to any dimension Rn — it’s just a little harder to visualise!

Answers to exercises

Exercise 1

If X is on L then X

0 = X , and the closest point on L to X is X itself. So assume L is on

X . For any point Y on L other than X

0, X X

0
Y forms a triangle with a right angle at X

0, so

X Y > X X

0. Hence X

0 is the closest point to X on L.

Exercise 2

Take any vector v and c = 0 in F (cv) = cF (v) to obtain F (0) = 0.

Exercise 3 a Rotation º/3 anticlockwise about the origin.

b Dilation by factor 7 in all directions from the origin.

c Rotation by º about the origin.

d Dilation from the x-axis with factor 3, and dilation from the y-axis with factor 2.

e Reflection in the line y = x.

Exercise 4

We compute f ± f (x, y) = f (y,°x + y) = (°x + y,°x) and then f

3(x, y) = f ± f ± f (x, y) =
f (°x+y,°x) = (°x,°y). Now f

6 is obtained by composing f

3 with itself twice, so f

6(x, y) =
f

3( f

3(x, y)) = f

3(°x,°y) = (x, y). Thus f

6 is the identity.

Exercise 5
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M M

°1 = 1
ad °bc

2

4a b

c d

3

5

2

4 d °b

°c a

3

5= 1
ad °bc

2

4ad °bc 0

0 ad °bc

3

5=

2

41 0

0 1

3

5= Id

The computation for M

°1
M is similar.

Exercise 6

Note that x

0 = x +2y , y

0 = 2x +4y implies y

0 = 2x

0, so the image of F lies on the line y

0 =
2x

0. So F is not surjective: for instance, there is no (x, y) such that F (x, y) = (0,1); if there

were, then x +2y = 0 and 2x +4y = 1, but then 2x +4y = 2(x +2y) = 0, a contradiction.

Alternatively, F is not injective as, for instance, F (0,0) = F (°2,1) = (0,0).

Exercise 7

Let M be the desired matrix, so M

2

43 °1

1 2

3

5=

2

41 2

2 °3

3

5. Thus M =

2

41 2

2 °3

3

5

2

43 °1

1 2

3

5

°1

=

1
7

2

41 2

2 °3

3

5

2

4 2 1

°1 3

3

5= 1
7

2

40 7

7 °7

3

5=

2

40 1

1 °1

3

5. Hence T

M

(x, y) = (y, x ° y).

Exercise 8

The x and y-axes are sent to the y-axis and negative x-axis respectively, so a point (x, y)

is mapped to (°y, x).

Exercise 9

The point (0,1) is on the unit circle at an angle of º/2 from the positive x-axis. Rotating

by ¡ gives the point (cos(¡+ º
2 ), sin(¡+ º

2 )) = (°sin¡, cos¡).

Exercise 10

We verify

2

4cosµ °sinµ

sinµ cosµ

3

5

2

4cos¡ °sin¡

sin¡ cos¡

3

5=

2

4cosµcos¡° sinµ sin¡ °cosµ sin¡° sinµcos¡

sinµcos¡+cosµ sin¡ °sinµ sin¡+cosµcos¡

3

5

which by sine and cosine addition formulas is the rotation matrix for angle µ+¡. Hence

the composition of rotations by µ and ¡ is rotation by µ+¡.

Exercise 11

If ¡ is not a multiple of 2º, then a rotation of ¡ about P sends no point to itself except P .



{44} • Transformations AMSI module

So if P 6= 0 then Rot
P,¡(0) 6= 0. By exercise ?? a linear transformation must send the origin

to the origin, so Rot
P,¡ cannot be linear.

Exercise 12

Translations by v and °v undo each other; they are inverse transformations. Thus Trans
v

is bijective, with inverse Trans°v

.

Exercise 13

Let x be a point in the plane. Translation by °v takes P to the origin and carries x along to

x°v. Then rotating by ¡ about 0 preserves 0 and rotates x°v around it. Then translating

by v moves the origin back to P and takes our point to the point rotated by ¡ about P .

Thus

Rot
P,¡

2

4x

y

3

5= Trans
v

±Rot
0,¡ ±Trans°v

2

4x

y

3

5= Trans
v

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

4x °a

y °b

3

5

= Trans
v

2

4(x °a)cos¡° (y °b)sin¡

(x °a)sin¡+ (y °b)cos¡

3

5=

2

4(x °a)cos¡° (y °b)sin¡+a

(x °a)sin¡+ (y °b)cos¡+b

3

5 .

Exercise 14 a Let Y be a point not on L. Then there is no X such that Proj
L

(X ) = Y ,

so Proj
L

is not surjective.

b Let L

0 be a line perpendicular to L, intersecting L at a point Y . Then for any point X

on L

0, Proj
L

(X ) = Y . Hence Proj
L

is not injective.

c If P is on L, then the perpendicular to L through P intersects L at P , so Proj
L

(P ) = P .

d For any point X , Proj
L

(X ) lies on L, so using the previous part with P = Proj
L

(X ) we

have Proj
L

°
Proj

L

(X )
¢
= Proj

L

(X ).

Exercise 15

The line through (x0, y0) with gradient °1 has equation y ° y0 =°(x°x0), or equivalently

y = °x + x0 + y0. At the intersection with the line y = x we have y = °x + x0 + y0 = x so

x = 1
2 (x0 + y0) and then y = x = 1

2 (x0 + y0) as desired.

Exercise 16

The line L given by y = 2x makes an angle ¡ with the positive x-axis such that tan¡= 2,

hence sin¡= 2p
5

and cos¡= 1p
5

. Thus

Proj
L

2

48

3

3

5=

2

4
1
5

2
5

2
5

4
5

3

5

2

48

3

3

5=

2

4
14
5

28
5

3

5 .
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Exercise 17 a A proof may be given by explaining the following pictures.

cv

v

v

w

v+w

b Dropping a perpendicular from (1,0) to L as shown we obtain a right-angled triangle

with hypotenuse 1 and angle ¡; so the projection of (1,0) to L is a distance of cos¡

along L from the origin. Lying on a ray at angle ¡ at a distance cos¡ from the origin,

then, Proj
L

(1,0) = cos¡(cos¡, sin¡) = (cos2¡, sin¡cos¡). Similarly Proj
L

(0,1) lies at

distance sin¡ from the origin on L, so equals (sin¡cos¡, sin2¡).

c The first part shows Proj
L

is linear, hence given by a matrix. The second part finds

the columns of this matrix. So Proj
l

is as claimed.

Exercise 18 a If P = (x, y) is on L, then (x, y) = (s cos¡, s sin¡) for some s. Hence

Proj
L

(P ) =

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5

2

4s cos¡

s sin¡

3

5=

2

4s cos¡(cos2¡+ sin2¡)

s sin¡(cos2¡+ sin2¡)

3

5=

2

4s cos¡

s sin¡

3

5= P.

b We compute

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5

2

=

2

4 cos2¡(cos2¡+ sin2¡) sin¡cos¡(cos2¡+ sin2¡)

sin¡cos¡(cos2¡+ sin2¡) sin2¡(cos2¡+ sin2¡)

3

5

=

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5 .

As this is the matrix for Proj
L

, we conclude Proj
L

±Proj
L

= Proj
L

as desired.

Exercise 19

Under Proj
L

, points on L are sent to themselves, but any point not on L is sent to a differ-

ent point. So if L does not pass through the origin 0, then Proj
L

(0) 6= 0. By exercise ??, a

linear transformation must send 0 to 0. Hence Proj
L

is not linear.

Exercise 20 a Rotating by °¡ about the origin brings L to the x-axis, carrying along a

point P . Then reflecting in the x-axis flips the point over the x-axis; rotating back by

¡ sends the x-axis back to L, and carries our point to the reflection of P in L. Hence

Ref
L

is given by the desired composition of transformations.

b As Rot
0,¡, Ref

x-axis and Rot
0,°¡ are all linear, and we know their matrices, we can

multiply them together to find a matrix for Ref
L

, which must also be linear. The
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matrix is
2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

41 0

0 °1

3

5

2

4 cos¡ sin¡

°sin¡ cos¡

3

5=

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

4cos¡ sin¡

sin¡ °cos¡

3

5

=

2

4cos2¡° sin2¡ 2sin¡cos¡

2sin¡cos¡ sin2¡°cos2¡

3

5=

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5 .

Exercise 21 a A proof may be given by explaining the following diagrams.

cv

v v

w

v+w

b Since (1,0) is distance 1 from the origin on an angle of 0, reflection in a line at angle¡

sends (1,0) to a point distance 1 from the origin on an angle of 2¡. Thus Ref
L

(1,0) =
(cos(2¡),sin(2¡)). Similarly one can show Ref

L

(0,1) = (sin(2¡),°cos(2¡)).

c The first part shows Ref
L

is linear; the second part calculates the columns of the

corresponding matrix, which is as claimed.

Exercise 22

The line L given by y = 2x passes through the origin on an angle ¡ such that tan¡ = 2,

hence sin¡ = 2p
5

and cos¡ = 1p
5

. Hence cos(2¡) = cos2¡° sin2¡ = °3
5 and sin(2¡) =

2sin¡cos¡= 4
5 . So reflection in L is given by

Ref
L

2

4x

y

3

5=

2

4
°3
5

4
5

4
5

3
5

3

5

2

4x

y

3

5 .

Exercise 23

The vector from Proj
L

(x) to x, and the vector from Proj
L

(x) to Ref
L

(x), have the same

length and point in opposite directions. Hence

x°Proj
L

(x) =°
°
Ref

L

(x)°Proj
L

(x)
¢

,

which rearranges to Ref
L

(x) = 2Proj
L

(x)°x, as desired.

Exercise 24

From the previous exercise, the matrix for Ref
L

is given by twice the matrix for Proj
L

,
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minus the identity matrix, which is

2

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5°

2

41 0

0 1

3

5=

2

4 2cos2¡°1 2sin¡cos¡

2sin¡cos¡ 2sin2¡°1

3

5=

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5 .

Exercise 25 a If P = (x, y) lies on L then (x, y) = (s cos¡, s sin¡) for some s, so
2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

4x

y

3

5=

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

4s cos¡

s sin¡

3

5

=

2

4s cos(2¡°¡)

s sin(2¡°¡)

3

5=

2

4s cos¡

s sin¡

3

5=

2

4x

y

3

5

b We verify

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5 is diagonal, with both diago-

nal entries given by cos2(2¡)+ sin2(2¡) = 1, hence is the identity matrix.

Exercise 26

We note that projection onto L is given by Proj
L

(x, y) = (d , y). Using exercise ?? then

Ref
L

(x, y) = 2Proj
L

(x, y)° (x, y) = 2(d , y)° (x, y) = (2d °x, y).

Exercise 27 a Rotating by °¡ about the origin brings L to the x-axis, and brings a

point P along with it; then dilating from the x-axis and rotating back by ¡ brings our

line back to L and sends our point to its dilation from L.

b The three transformations in the previous part are all linear; multiplying them will

give a matrix for Dil
L,k , which must be linear.

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

41 0

0 k

3

5

2

4 cos¡ sin¡

°sin¡ cos¡

3

5=

2

4cos¡ °sin¡

sin¡ cos¡

3

5

2

4 cos¡ sin¡

°k sin¡ k cos¡

3

5

=

2

4 cos2¡+k sin2¡ (1°k)sin¡cos¡

(1°k)sin¡cos¡ sin2¡+k cos2¡

3

5=

2

4 1+ (k °1)sin2¡ (1°k)sin¡cos¡

(1°k)sin¡cos¡ 1+ (k °1)cos2¡

3

5

Exercise 28

The line L given by y = 2x makes angle ¡ with the x-axis, where tan¡ = 2, so sin¡ = 2p
5

and cos¡= 1p
5

. Hence

Dil
L,5

2

43

0

3

5=

2

41+4 · 4
5 °4 · 2

5

°4 · 2
5 1+4 · 1

5

3

5

2

43

0

3

5=

2

4
21
5

°8
5

°8
5

9
5

3

5

2

43

0

3

5=

2

4
63
5

°24
5

3

5 .
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Exercise 29

We first note that Dil
L,k has determinant

°
1+ (k °1)sin2¡

¢°
1+ (k °1)cos2¡

¢
°(1°k)2 sin2¡cos¡ = 1+(k°1)sin2¡+(k°1)cos2¡= k.

Hence the inverse of the matrix for Dil
L,k is

1
k

2

4 1+ (k °1)cos2¡ (k °1)sin¡cos¡

(k °1)sin¡cos¡ 1+ (k °1)sin2¡

3

5=

2

4
1
k

+
°
1° 1

k

¢
cos2¡

°
1° 1

k

¢
sin¡cos¡

°
1° 1

k

¢
sin¡cos¡ 1

k

+
°
1° 1

k

¢
sin2¡

3

5 .

Now 1
k

+(1° 1
k

)cos2¡= 1
k

(1°cos2¡)+cos2¡= 1
k

sin2¡+1°sin2¡= 1+
° 1

k

°1
¢

sin2¡ and,

similarly, 1
k

+
°
1° 1

k

¢
sin2¡= 1+

° 1
k

°1
¢

cos2¡. Hence this matrix is the matrix for dilation

by factor 1/k from L.

Exercise 30 a When k = 0, the matrix for Dil
L,k becomes

2

4 1° sin2¡ sin¡cos¡

sin¡cos¡ 1° sin2¡

3

5 =

2

4 cos2¡ sin¡cos¡

sin¡cos¡ cos2¡

3

5 ,

which is the matrix for projection onto L.

b When k =°1 we have
2

4 1°2sin2¡ 2sin¡cos¡

2sin¡cos¡ 1°2cos2¡

3

5=

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

which is the matrix for reflection in L.

Exercise 31 a A reflection is a dilation by factor °1, so applying it twice gives a dila-

tion with factor (°1)2 = 1, i.e. the identity.

b A projection is a dilation by factor 0, so applying it twice gives a dilation with factor

02 = 0, i.e. the same projection.

Exercise 32 a A projection matrix clearly has the desired properties. For the con-

verse, suppose M is symmetric (b = c), ad = b

2 and a +d = 1. Since a and d have

sum and product ∏ 0, both are ∏ 0; since they sum to 1, both lie in [0,1]. Hence we

have a = cos2¡ and b = sin2¡ for some ¡. Then b

2 = cos2¡sin2¡ so b = sin¡cos¡

or °sin¡cos¡. In the first case we have the matrix for projection onto a line at angle

¡; in the second case for projection onto a line at angle °¡.

b A reflection matrix clearly has the desired properties. For the converse, suppose M

is symmetric (b = c), a =°d and ad °b

2 =°1. Substituting a =°d then gives °a

2 °
b

2 =°1, so (a,b) lies on he unit circle and hence a = cos(2¡), b = sin(2¡) for some ¡.

We then have a reflection matrix.
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c A dilation matrix can be verified to have the desired properties. For the converse,

suppose b = c and a +d = 1+ ad °b

2. Let ad °b

2 = k, so a +d = k +1. Since (a °
1)+ (d °1) = k °1 and (a °1)(d °1) = ad °a °d +1 = b

2, both a °1 and d °1 have

the same sign as k °1. Since they sum to k °1, they lie between 0 and k °1. Thus

we may write a°1 = (k °1)sin2¡ and d °1 = (k °1)cos2¡ for some ¡. We then have

b

2 = ad ° k = [1+ (k ° 1)sin2¡][1+ (k ° 1)cos2¡]° k = (k ° 1)2 sin2¡cos2¡. Thus

b =±(1°k)sin¡cos¡. Replacing ¡ with °¡ if necessary, we have a dilation matrix.

Exercise 33

Applying the translation we have (x, y) 7! (x + 3, y), then applying the dilation we have

(x +3, y) 7! (x +3,2y) = (x

0, y

0). So the transformation is the same, and the answer is the

same.

Exercise 34

Applying the translation we have (x, y) 7! (x + 1, y + 3); then applying the reflection we

have (x +1, y +3) 7! (°x °1, y +3); then applying the dilation we have (°x °1, y +2) 7!
(°3x °3, y +2). The result is a different transformation, giving a different answer.

Exercise 35

Translating k units to the left gives y = e

x+k . Dilating by e

k form the x-axis gives y = e

k

e

x .

These are the same graph since e

x+k = e

k

e

x .

Exercise 36

From (x, y), dilating and then rotating gives an ellipse; the transformation is

2

4x

0

y

0

3

5=

2

4
1p
2

°1p
2

1p
2

1p
2

3

5

2

41 0

0 2

3

5

2

4x

y

3

5=

2

4
1p
2

°
p

2

1p
2

p
2

3

5

2

4x

y

3

5

and hence, inverting,

2

4x

y

3

5=

2

4
1p
2

°
p

2

1p
2

p
2

3

5

°1 2

4x

0

y

0

3

5= 1
2

2

4
p

2
p

2

°1p
2

1p
2

3

5

2

4x

0

y

0

3

5= 1
p

2

2

4 x

0+ y

0

°1
2 x

0+ 1
2 y

0

3

5 .

Thus the expression x

2 + y

2 becomes

1
2

(x

0+ y

0)2 + 1
2

µ
°1

2
x

0+ 1
2

y

0
∂2

= 5
8

x

02 + 5
8

y

02 + 3
4

x

0
y

0.

The equation of the transformed circle is thus 5
8 x

2 + 5
8 y

2 + 3
4 x y = 1, which is an ellipse.

Exercise 37
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Reflection in the line y = x takes (x, y) to (x

0, y

0) = (y, x). The equation y = f (x) becomes

x

0 = f (y

0), and hence the transformed graph is given by x = f (y), or equivalently, y =
f

°1(x).

Exercise 38 a The parallelograms spanned by v,w and v,w+kv both have base v the

same height above this base, and the same orientation, so have the same signed area.

The same applies to v,w and v+kw,w above a base of w.

b If we reverse the order of v and w the parallelogram is unchanged but has its orien-

tation reversed, hence its signed area changes sign.

c The vectors (a,0) and (b,d) span a parallelogram with base a and perpendicular

height d , hence area |ad |. The parallelogram is positively oriented if a and d have

the same sign, and negatively oriented otherwise, so the signed area is ad . A similar

argument applies to (a,c) and (b,0).

d Applying the first part to (a,c) and (b,d), the signed area they span is equal to the

signed area spanned by (a,c)° c

d

(b,d) and (b,d).

e For any vectors v = (a,c) and w = (b,d), if d 6= 0 then the previous part applies and

gives the signed area as det M . If d = 0 then part c applies and gives the signed area

as °bc = ad °bc = det M .

Exercise 39

We compute det

2

4cos¡ °sin¡

sin¡ cos¡

3

5 = cos2¡+ sin2¡ = 1, det

2

4 cos2¡ sin¡cos¡

sin¡cos¡ sin2¡

3

5 =

cos2¡sin2¡° cos2¡sin2¡ = 0 and det

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5 = °cos2(2¡)° sin2(2¡) =

°1.

Exercise 40

Compute det

2

4 1+ (k °1)sin2¡ (1°k)sin¡cos¡

(1°k)sin¡cos¡ 1+ (k °1)cos2¡

3

5=
£
1+ (k °1)sin2¡

§£
1+ (k °1)cos2¡

§
°

(1°k)2 sin2¡cos2¡, which simplifies to 1+(k°1)(sin2¡+cos2¡)+(k°1)2 sin2¡cos2¡°
(1°k)2 sin2¡cos2¡= 1+ (k °1) = k.

Exercise 41

Let A,B be points in the plane and let A

0
B

0 be their images under transformation; to

demonstrate an isometry we show AB = A

0
B

0.

Under a translation, ABB

0
A

0 forms a parallelogram so AB = A

0
B

0.
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For a reflection, let X be a point on the line of reflection. Then triangles X AB and X A

0
B

0

are congruent, so AB = A

0
B

0.

For a projection, take A,B to be distinct points projecting onto the same point. Then

A

0 = B

0 so A

0
B

0 = 0 < AB . As AB 6= A

0
B

0, a projection is not an isometry.

For a dilation, take A to be a point on the line of dilation and B a point which projects

onto A. Then A

0
B

0 = |k|AB 6= AB . Hence this transformation is not an isometry.

Exercise 42

Since det M = 1, T

M

preserves areas. But, for instance, let A = (0,0) and B = (1,0), so

A

0 = (0,0) and B

0 = (2,0). Then AB = 1 but A

0
B

0 = 2 so T

M

is not an isometry.

Exercise 43

We compute the matrix for the composition Ref
L2 ±Ref

L1 as

2

4cos(2¡) sin(2¡)

sin(2¡) °cos(2¡)

3

5

2

41 0

0 °1

3

5=

2

4cos(2¡) °sin(2¡)

sin(2¡) cos(2¡)

3

5 ,

which is the matrix for rotation by 2¡ about the origin.
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