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Integration

Assumed knowledge

• The content of the module Introduction to differential calculus.

• The content of the module Applications of differentiation.

Motivation

From little things, big things grow.

— Written and composed by Paul Kelly and Kev Carmody

Adding up a function in small pieces

You ride your bicycle for 5 minutes. Your bike is equipped with a fancy speedometer, and

you keep your eye on it — so you know precisely how fast you are going at every instant

for those 5 minutes. How far did you go in those 5 minutes?

This is not a very realistic situation, but let’s suspend disbelief for now and try to imagine

how you might answer this question.

y

t
0

y  =  v(t)

When travelling at constant velocity,
∆ s = v ∆ t.

∆ t

∆ s = v ∆ t

The first thing you recall is ∆s = v ∆t . The

change in your position, or displacement, ∆s is

given by your velocity v multiplied by the time

taken ∆t . However, this equation only holds

if you travel at constant velocity — but your

speedometer said otherwise!

Trying to figure out how far you went on your bi-

cycle, you recall how fast you were going at the

1-minute mark, at the 2-minute mark, and so

on. Using this information and ∆s = v ∆t , you

estimate how far you went in each minute. Adding up these estimates, you have an esti-

mate for how far you went over the whole 5 minutes.
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But this might not be a very accurate estimate — your speed might change a lot over the

course of a minute! What about all those hills in the third minute?

Trying to be more accurate, you break your trip down into 30-second intervals, and recall

your speed after 30 seconds, 60 seconds, 90 seconds, and so on. Then you can estimate

how far you went in each 30-second interval, and add them up to estimate the total dis-

tance you travelled. This may be more accurate than the previous estimate, but your

speed still varies a lot over 30-second intervals.

Trying to be ever more accurate, you break your journey down into 10-second intervals

. . . then 5-second intervals . . . then 1-second intervals . . . and further. If you really knew

your speed at every instant of the journey, you could perform all these calculations, and

see how far you travelled. Your calculations would lead you to ever more accurate esti-

mates of how far you really went. Your better and better estimates will approach, in the

limit, the exact distance travelled. You might imagine in this limit that you were ‘adding

up your velocity at every instant’ to give the precise answer.

Of course, this whole situation is wildly unrealistic.1 However, in principle, we have given

a mathematical technique to answer the question of how far you went. Given the func-

tion v(t ), your velocity at time t , you could use these ideas to calculate exactly how far

you went. This idea of ‘adding up’ the function at more and more closer and closer points

is essentially the idea of integration.

We’ve previously seen differentiation, and you might recall that differentiation can an-

swer a related question. If you know where you are on your bike (i.e., your displacement)

at every instant, then you can work out your velocity at every instant. If f (t ) is how far

you’ve travelled at time t , then the derivative f ′(t ) gives your instantaneous velocity at

time t . This is the opposite problem: given position, we used differentiation to figure out

velocity; now, given velocity, we use integration to figure out position.

1 If you tried to perform these calculations while on your bike, you likely would have crashed it. If you kept

your eye on your speedometer at every instant, you certainly would have crashed it!

We could go on even more pedantically. The speedometer, like any measuring device, has uncertainties.

Your memory cannot hold the full data of your speed at every instant in 10 minutes — there are infinitely

many instants in that time! You are not really moving on a smooth surface; your path was really chaotically

bumpy. Points on the Earth’s surface are not fixed in place but are always moving about from climatic and

geological phenomena. As it turns out, in the real world there is not really an objective notion of the ‘time

elapsed’ or ‘distance travelled’: relativity theory tells us that time measurements depend on the observer.

And to get an exactly accurate answer you would have to go down to the atomic level, where quantum

mechanics precludes you from measuring distance and time accurately even in principle.

The real world is complicated! Luckily mathematics is much simpler.
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It is an important fact that integrating a function — adding up the values over smaller

and smaller intervals and seeing what the total is — turns out to be the opposite of dif-

ferentiation. This is, as we will see, the idea of the fundamental theorem of calculus, the

central idea of calculus.

Calculus is a crucial area of mathematics, necessary for understanding how quantities

change in relation to each other, and for understanding almost every aspect of the phys-

ical world. Differentiation deals with how one quantity changes with respect to another,

in the limit of small changes. But it is only half the story. Integration deals with the sum of

these small changes, in the limit, adding them up and putting them back together again.

Whether it’s your speed on your bike, or biological populations, or chemical concentra-

tions, or economic indicators, or environmental conditions, or physical phenomena —

to understand how quantities in the world are related, we need to understand both dif-

ferential and integral calculus.

Other questions

In the same vein as your bicycle with a speedometer, we present some more situations

and questions below. These are not questions with exact answers, nor even the types of

questions asked in secondary school mathematics; but they raise issues about how you

might approach them mathematically. How might they also require us to add something

up over many short intervals to get close to the exact answer — that is, by using inte-

gration? Some of them are contrived and unrealistic, but perhaps they will be useful to

think about.

• Today is partly cloudy. Sometimes the sun is shining fully, sometimes the sun is par-

tially blocked by clouds, and sometimes the clouds are thicker or thinner. You look at

the sun and you know how much light is getting through at every instant. How hot is

it? Do you need to look down to see if the ground is still wet from the rain last night?

Will you get sunburnt?

• You are in control of a spacecraft heading towards Mars at 21 000 kilometres per hour.

To land the spacecraft safely you need to slow down to zero. The spacecraft has rock-

ets, and you know, when the rockets are turned on, the force they exert on the space-

craft. How long do you need to fire the rockets to stop the spacecraft?

• You are observing an ecological system in the forest. There are predators and prey.

The number of predators increases when there is prey for them to eat, and the more

prey around, the faster their numbers increase. The number of prey increases natu-

rally but decreases when they are eaten by predators. How will the ecosystem evolve

over time?
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• You are at a power station and you can see, at every instant, the power that the station

is producing. How much energy has been produced over the course of the day?

• You are lucky enough to have a smartphone with an accelerometer in it. That is, the

phone can tell its acceleration at any instant. By using only its accelerometer, can the

phone calculate which way it is going at any instant and how fast? Can it know at any

instant where it is?

• You have a function f (x) and its graph y = f (x). What is the area under the graph?

It is the last problem — an area under a graph — which is a purely mathematical one,

and the most abstract. However, all of the other situations, it turns out, can be related to

this type of mathematical problem. Integration is intimately connected to the area under

a graph.

Content

The area under a graph

Suppose you have a function f : R→ R and its graph y = f (x). You want to find the area

under the graph. For now we’ll assume that the graph y = f (x) is always above the x-axis,

and we’ll estimate the area between the graph y = f (x) and the x-axis. We set left and

right endpoints and estimate the area between those endpoints.

Below is the graph of f (x) = x2 + 1. We’ll try to find the area under the graph y = f (x)

between x = 0 and x = 5, which is shaded.

y

x
0 5

y  =  f(x)

f(x)

x

As a first approximation, we can divide the interval [0,5] into five subintervals of width 1,

i.e., [0,1], [1,2], . . . , [4,5], and consider rectangles as shown on the following graph.
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y

x
0 54321

As we can see, the total area of these rectangles is a rough approximation to the area we

are looking for, but a clear underestimate. The total area of the rectangles is calculated in

the following table.

Approximating the area under the graph with 5 rectangles

Interval Width of rectangle Height of rectangle Area of rectangle

[0,1] 1 f (0) = 02 +1 = 1 1

[1,2] 1 f (1) = 12 +1 = 2 2

[2,3] 1 f (2) = 22 +1 = 5 5

[3,4] 1 f (3) = 32 +1 = 10 10

[4,5] 1 f (4) = 42 +1 = 17 17

Total area 35

For a slightly better approximation, we can split the interval into 10 equal subintervals,

each of length 1
2 . Using the same idea, we have the rectangles shown on the following

graph. We clearly have a better estimate, but still an underestimate.

y

x
0 54321
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Approximating the area under the graph with 10 rectangles

Interval Width of rectangle Height of rectangle Area of rectangle

[0, 1
2 ] 1

2 f (0) = 0+1 = 1 1
2

[ 1
2 ,1] 1

2 f ( 1
2 ) = 1

4 +1 = 5
4

5
8

[1, 3
2 ] 1

2 f (1) = 1+1 = 2 1

[ 3
2 ,2] 1

2 f ( 3
2 ) = 9

4 +1 = 13
4

13
8

[2, 5
2 ] 1

2 f (2) = 4+1 = 5 5
2

[ 5
2 ,3] 1

2 f ( 5
2 ) = 25

4 +1 = 29
4

29
8

[3, 7
2 ] 1

2 f (3) = 9+1 = 10 5

[ 7
2 ,4] 1

2 f ( 7
2 ) = 49

4 +1 = 53
4

53
8

[4, 9
2 ] 1

2 f (4) = 16+1 = 17 17
2

[ 9
2 ,5] 1

2 f ( 9
2 ) = 81

4 +1 = 85
4

85
8

Total area 325
8 = 40.625

Splitting [0,5] into more subintervals of smaller width, we can perform the same calcula-

tion and estimate the area. With more rectangles, the calculations become more tedious,

but some results are given in the following table.

Approximating the area under the graph with more rectangles

Number of intervals Width of each interval Total area of rectangles

5 1 35

10 0.5 40.625

50 0.1 45.425

100 0.05 46.04375

1 000 0.005 46.6041875

10 000 0.0005 46.66041875

100 000 0.00005 46.66604166875

1 000 000 0.000005 46.6666041666875

With more and more thinner and thinner rectangles, the areas appear to be converging

towards a limit. It turns out, as we will see, that the limit is 46 2
3 .

The area under a curve is defined to be this limit. Although we have an intuitive notion

of what area is, for a mathematically rigorous definition we need to use integration.
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Estimates of area

Left-endpoint estimate

In the previous section, we estimated the area under the graph by splitting the inter-

val [0,5] into equal subintervals, and considering rectangles built on these subintervals.

These rectangles had their top-left corner touching the curve y = f (x). In other words,

the height of the rectangle over a subinterval was the value of f at the left endpoint of

that subinterval. For this reason, this method is known as the left-endpoint estimate.

To obtain a general formula for this estimate, suppose we have a real-valued function

f (x) defined on an interval [a,b]. In order to estimate the area under the graph y = f (x)

between x = a and x = b, we split [a,b] into n equal subintervals. Let these be

[x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn].

So x0 = a, xn = b and the real numbers x1, . . . , xn−1 are equally spaced between a and b.

As the numbers are equally spaced, the width of each interval is 1
n (b −a). That is,

x j −x j−1 = b −a

n
, for all j = 1,2, . . . ,n.

We also write ∆x for this width, the ‘change in x’ between successive endpoints.

Exercise 1

Show that x j is given by

x j = a + j
(b −a

n

)
= a + j ∆x, for every j = 0,1, . . . ,n.

Above the interval [x0, x1], we have a rectangle whose width is ∆x and whose height is

f (x0). In general, above the interval [x j−1, x j ], we have a rectangle of width∆x and height

f (x j−1). The area of this rectangle is then f (x j−1)∆x. The total area estimate is therefore

[
f (x0)+ f (x1)+·· ·+ f (xn−1)

]
∆x =

n∑
j=1

f (x j−1)∆x.

Right-endpoint estimate

Instead of setting the height of each rectangle to the value of f at the left endpoint of

each subinterval, we can use the right endpoint and obtain the right-endpoint estimate.

We again have a rectangle above each interval [x j−1, x j ] of width 1
n (b − a) = ∆x, but the

height is now given at the right endpoint, i.e., the height is f (x j ). So the total area esti-

mate is[
f (x1)+ f (x2)+·· ·+ f (xn)

]
∆x =

n∑
j=1

f (x j )∆x.
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Note that this formula only differs slightly from that for the left-endpoint estimate; the

heights are obtained at x-values x1 to xn , rather than x0 to xn−1.

y

x
0 54321

y

x
0 54321

Midpoint estimate.Right-endpoint estimate.

Example

Estimate the area under the graph of y = x3 between 0 and 2, using the right-endpoint

estimate with four subintervals. Is this an overestimate or an underestimate?

Solution

We split the interval [0,2] into n = 4 equal subintervals [0, 1
2 ], [ 1

2 ,1], [1, 3
2 ], [ 3

2 ,2] and

consider rectangles of width ∆x = 1
2 . The right endpoints are 1

2 , 1, 3
2 and 2, so letting

f (x) = x3, the estimate for the area is

4∑
j=1

f (x j )∆x = [
f (x1)+ f (x2)+ f (x3)+ f (x4)

]
∆x

=
[

f
(1

2

)
+ f (1)+ f

(3

2

)
+ f (2)

] 1

2

=
[

1

8
+1+ 27

8
+8

]
1

2

= 25

2
· 1

2
= 25

4
.

In each interval [x j−1, x j ], the function f takes its maximum value at x j . So this is an

overestimate.

Midpoint estimate

A third way to estimate the area under a graph is to set the height of each rectangle equal

to the value of f at the midpoint of each subinterval, obtaining the midpoint estimate.
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Specifically, above the interval [x0, x1] there is again a rectangle of width∆x, but its height

is the value of f at the midpoint of the interval. The midpoint is 1
2 (x0 + x1), so the height

is f
(1

2 (x0 + x1)
)

and the area of the rectangle is f
(1

2 (x0 + x1)
)
∆x. Similarly, above each

interval [x j−1, x j ], which has midpoint 1
2 (x j−1 + x j ), there is a rectangle of width ∆x and

height f
(1

2 (x j−1 + x j )
)
, and hence of area f

(1
2 (x j−1 + x j )

)
∆x. Therefore the total area

estimate is[
f
( x0 +x1

2

)
+ f

( x1 +x2

2

)
+·· ·+ f

( xn−1 +xn

2

)]
∆x =

n∑
j=1

f
( x j−1 +x j

2

)
∆x.

Exercise 2

Estimate the area under the graph of y = x2 + x between x = 0 and x = 4, using the mid-

point estimate with two subintervals.

Exercise 3

Assume as above that the graph of y = f (x) is above the x-axis, and assume also that f

is an increasing function (that is, u ≤ v implies f (u) ≤ f (v)). Explain why, under these

conditions, we have

left-endpoint estimate ≤ midpoint estimate ≤ right-endpoint estimate.

What happens if f is a decreasing function (that is, u ≤ v implies f (u) ≥ f (v))?

Trapezoidal estimate

We need not restrict ourselves to rectangles. Instead, we could plot the points on the

graph y = f (x) for each x j , and join the dots. In this way, the function f (x) is approxi-

mated by a piecewise linear function, that is, a sequence of straight line segments. The

area under y = f (x) is then approximated by trapezia. This estimate is known as the

trapezoidal estimate.

y

x
0 54321

Trapezoidal estimate.
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Above the interval [x0, x1] we have a trapezium of width 1
n (b − a) = ∆x. Its left side has

height f (x0), and its right side has height f (x1). So the area of the trapezium is

( f (x0)+ f (x1)

2

)
∆x.

Similarly, above the interval [x j−1, x j ], we have a trapezium of width∆x with two sides of

height f (x j−1) and f (x j ), hence the area of the trapezium is 1
2

(
f (x j−1)+ f (x j )

)
∆x. The

total area estimate is[
f (x0)+ f (x1)

2
+ f (x1)+ f (x2)

2
+ f (x2)+ f (x3)

2
+·· ·+ f (xn−1)+ f (xn)

2

]
∆x,

which simplifies to[
1

2
f (x0)+ f (x1)+ f (x2)+·· ·+ f (xn−1)+ 1

2
f (xn)

]
∆x.

Exercise 4

Show that the trapezoidal estimate is the average of the left-endpoint estimate and the

right-endpoint estimate.

Limits of estimates

In some simple cases, it is possible to calculate an area estimate with n rectangles (or

trapezia) and explicitly take the limit as n → ∞ to obtain the exact area. In the rest of

this module, and in practice, we use other techniques to calculate areas, but it is worth

seeing that sometimes a direct approach is possible.

For example, consider the function f (x) = x2 and the area under the graph y = f (x) be-

tween x = 0 and x = 1. We’ll compute the right-endpoint estimate with n rectangles, and

then take the limit as n →∞.

y

x
0 1

y = f(x)

Dividing the interval [0,1] into n subintervals

[x0, x1], . . . , [xn−1, xn], we have

∆x = 1

n
and x j = j

n
.

So the right-endpoint estimate is

n∑
j=1

f (x j )∆x =
n∑

j=1
f
( j

n

) 1

n

=
n∑

j=1

( j

n

)2 1

n
= 1

n3

n∑
j=1

j 2.
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As it turns out, there is a formula for the sum of the first n squares:

n∑
j=1

j 2 = 12 +22 +·· ·+n2 = n(n +1)(2n +1)

6
.

The right-endpoint estimate with n rectangles then becomes

n(n +1)(2n +1)

6n3 = 2n3 +3n2 +n

6n3

= 1

6

(
2+ 3

n
+ 1

n2

)
.

Taking the limit as n →∞, since 3
n → 0 and 1

n2 → 0, the area under the curve is

lim
n→∞

1

6

(
2+ 3

n
+ 1

n2

)
= 1

3
.

Note that the method used above relies crucially on the formula for the sum of squares.

For more complicated functions, no such formula may be available, and this approach

becomes impractical or impossible.

Exercise 5

Using the formula

n∑
j=1

j = 1+2+·· ·+n = n(n +1)

2
,

calculate the right-endpoint estimate for the area under the graph y = x between x = 0

and x = 1. Take the limit as n → ∞ to find the exact area. Confirm your answer using

elementary geometry.

Definition of the integral

One can show that, as long as the function f (x) is continuous (see below), then using any

of these estimates, as we take more and more thinner and thinner rectangles (or trapezia)

— i.e., as n →∞ or ∆x → 0 in the limit — the area estimates computed will converge to

an answer for the exact area under the graph. Moreover, no matter which estimate we

use, we will end up with the same answer.

For our purposes, continuous means that you can draw the graph y = f (x) without tak-

ing your pen off the paper. Actually, it’s sufficient that the graph is piecewise continuous,

i.e., constructed out of several continuous functions.
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For a function f (x), considered between x = a and x = b, the limit we obtain for the exact

area is denoted by∫ b

a
f (x) d x

and is called the definite integral, or simply the integral, of f (x) with respect to x from

x = a to x = b. The symbol
∫

is called an integral sign, and the numbers a,b are called

the terminals or endpoints of the integral. The function f (x) is called the integrand.

We can think of the integral as being the limit of a sum. Roughly speaking, the area esti-

mates are given by expressions like
∑

f (x j )∆x and in the limit these become
∫

f (x) d x.

Area and the antiderivative

Let’s return to our function f (x) = x2 +1, and our quest to find the area under the graph

y = f (x) between x = 0 and x = 5, i.e.,∫ 5

0
(x2 +1) d x.

As we’ve seen, we can estimate the area by many narrow rectangles, each over a sub-

interval of [0,5], with width ∆x and height given by a value of f (x). As we take the limit

of more and more narrower and narrower rectangles, we get a better approximation to

the area.

To calculate the exact area, we introduce an area function A. For any fixed number c > 0,

let A(c) be the area under the graph y = f (x) between x = 0 and x = c. So we can define

the function A(x) to be the area between 0 and x. Clearly A(0) = 0. We seek A(5).

y

x
0

y  =  f(x)

A(x)

x

A(x) is given by the shaded area.

The fundamental idea is to consider the derivative of the area function A. What is A′(x)?
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In fact, A′(x) = f (x). We can see this geometrically. To differentiate A(x) from first prin-

ciples, we consider

A(x +h)− A(x)

h
.

Now A(x+h) is the area under the graph up to x+h, and A(x) is the area under the graph

up to x. Thus A(x +h)− A(x) is the area under the graph between x and x +h.

y

x
0

y  =  f(x)

x x+h

A(x+h)–A(x)

If you were to ‘level off’ the area under the graph between x and x +h, you’d obtain a

rectangle (as shown in the graph above) with width h and height equal to the average

value of f ; dividing the area by h gives the average value:

A(x +h)− A(x)

h
= area of rectangle

width of rectangle

= height of rectangle

= average value of f over the interval [x, x +h].

If h becomes very small, then the interval [x, x +h] approaches the single point x. And

the average value of f over this interval must approach f (x). So we have

lim
h→0

A(x +h)− A(x)

h
= f (x).

In other words,

A′(x) = f (x),

and A(x) is an antiderivative of f (x).

Returning again to our example f (x) = x2 + 1, what then is the area function A(x)? Its

derivative must be f (x) = x2 +1. We’re looking for a function A such that

A′(x) = x2 +1 and A(0) = 0.
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Thinking back to derivatives, we can see that the antiderivative

A(x) = 1

3
x3 +x

satisfies these criteria. Hence the total area is

A(5) = 125

3
+5 = 140

3
= 46

2

3
,

confirming our earlier estimates. We can write this as∫ 5

0
f (x) d x = A(5)− A(0) = 140

3
.

Antiderivatives and indefinite integrals

In order to calculate integrals, we now see that it’s important to be able to find antideriva-

tives of functions. An antiderivative of a function f (x) is a function whose derivative is

equal to f (x). That is, if F ′(x) = f (x), then F (x) is an antiderivative of f (x).

Importantly, antiderivatives are not unique. A given function can have many antideriva-

tives. For instance, the following functions are all antiderivatives of x2:

x3

3
,

x3

3
+1,

x3

3
−42,

x3

3
+π.

However, any two antiderivatives of a given function differ by a constant. This allows us

to write a general formula for any antiderivative of x2:

x3

3
+ c, where c is a constant.

Since, as we saw in the previous section, antiderivatives are intimately connected with

areas, we write this antiderivative as∫
x2 d x = x3

3
+ c

and call this an indefinite integral.

An indefinite integral is an integral written without terminals; it simply asks us to find

a general antiderivative of the integrand. It is not one function but a family of functions,

differing by constants; and so the answer must have a ‘+ constant’ term to indicate all

antiderivatives.

A definite integral, on the other hand, is an integral with terminals. It is a number which

measures an area under a graph between the terminals.
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Exercise 6

Find the derivatives of the following functions:

a for n,c any real constants with n 6= −1,

f (x) = 1

n +1
xn+1 + c

b for a,b,c,n any real constants with a 6= 0 and n 6= −1,

f (x) = 1

a(n +1)
(ax +b)n+1 + c.

From our knowledge of differentiation, and in particular the above exercise, we have the

following formulas for antiderivatives.

Basic antiderivatives

Function General antiderivative Comment

xn 1

n +1
xn+1 + c for n,c any real constants with n 6= −1

(ax +b)n 1

a(n +1)
(ax +b)n+1 + c for a,b,c,n any real constants with a 6= 0, n 6= −1

Example

Find

1
∫

1 d x 2
∫

(3x −1)4 d x.

Solution

1 We can observe directly that x is an antiderivative of 1, or we can use the above rule

for the antiderivative of xn when n = 0. Either way, the general antiderivative is x + c

and so
∫

1 d x = x + c, where c is a constant.

2 Using the above rule for the antiderivative of (ax +b)n with a = 3, b =−1 and n = 4,

we obtain∫
(3x −1)4 d x = 1

15
(3x −1)5 + c, where c is a constant.
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Exercise 7

Find the indefinite integrals

a
∫

1p
3−2x

d x b
∫

1

(3−2x)2 d x.

The following theorem gives some useful rules for computing integrals.

Theorem (Linearity of integration)

a If f and g are continuous functions, then∫ (
f (x)± g (x)

)
d x =

∫
f (x) d x ±

∫
g (x) d x.

b If f is a continuous function and k is a real constant, then∫
k f (x) d x = k

∫
f (x) d x.

This theorem allows us to compute an antiderivative by treating a function term-by-term

and factoring out constants, as the next example illustrates.

Example

Find ∫
(3x3 −4x2 +2) d x.

Solution

Using the above rules, we can rewrite the integral as follows:∫
(3x3 −4x2 +2) d x =

∫
3x3 d x −

∫
4x2 d x +

∫
2 d x

= 3
∫

x3 d x −4
∫

x2 d x +2
∫

1 d x

= 3x4

4
− 4x3

3
+2x + c.

Note. You might think that, since there are several indefinite integrals on the second line

of these equations, there should be several different constants in the answer. But since

the sum of several constants is still a constant, we can just write a single constant.
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Exercise 8

Find ∫
(3x2 + 3

p
x) d x.

Exercise 9

Prove the theorem above (linearity of integration) using similar rules for differentiation.

Calculating areas with antiderivatives

A general method to find the area under a graph y = f (x) between x = a and x = b is

given by the following important theorem.

Theorem (Fundamental theorem of calculus)

Let f (x) be a continuous real-valued function on the interval [a,b]. Then∫ b

a
f (x) d x =

[
F (x)

]b

a
= F (b)−F (a),

where F (x) is any antiderivative of f (x).

The notation
[
F (x)

]b
a is just a shorthand to substitute x = a and x = b into F (x) and

subtract; it is synonymous with F (b)−F (a).

Note that any antiderivative of f (x) will work in the above theorem. Indeed, if we have

two different antiderivatives F (x) and G(x) of f (x), then they must differ by a constant,

so G(x) = F (x)+c for some constant c. Then we have to get the same answer whether we

use F or G , since

G(b)−G(a) = (
F (b)+ c

)− (
F (a)+ c

)
= F (b)−F (a).

We give a proof of the theorem, assuming our previous statements:

• the derivative of the area function is f (x)

• any two antiderivatives of f (x) differ by a constant.
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Proof

y

x
0

y  =  f(x)

A(x)

x ba

As before, let A(c) be the area under the

graph y = f (x) between x = a and x = c.

So we have an area function A(x) which

measures the area between a and x. We

must find A(b), the area from a to b.

The derivative of the area function A(x)

is f (x), so A(x) is an antiderivative of

f (x). As both A(x) and F (x) are an-

tiderivatives of f (x), they must differ by

a constant, i.e., A(x) = F (x)+K for some constant K . Since A(a) = 0, this implies

F (a)+K = 0. Hence K = −F (a), and it follows that A(x) = F (x)−F (a). Therefore

the desired integral is equal to A(b) = F (b)−F (a).

We can return to our original problem and solve it using the fundamental theorem.

Example

Find ∫ 5

0
(x2 +1) d x.

Solution

An antiderivative of x2 +1 is 1
3 x3 +x, so we have

∫ 5

0
(x2 +1) d x =

[
1

3
x3 +x

]5

0

=
(1

3
·53 +5

)
−

(1

3
·03 +0

)
= 125

3
+5 = 140

3
= 46

2

3
.

Exercise 10

Find ∫ 8

0
(3x2 + 3

p
x) d x.
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Velocity–time graphs

Let us now return to our original motivating question with the bike and speedometer. Let

v(t ) denote your velocity on your bike at time t , and we now calculate your total change

in position between time t = a and t = b. As mentioned earlier, if v(t ) is a constant func-

tion, and so you are travelling at constant velocity, then your total change in position, or

displacement, is ∆s = v ∆t .

Our idea of estimating your distance travelled by breaking your trip up into 1-minute

intervals is nothing more than an area estimate. We may divide the time interval [a,b]

into n subintervals [t0, t1], [t1, t2], . . . , [tn−1, tn], each of width ∆t = 1
n (b −a). We can esti-

mate your velocity over the interval [t j−1, t j ] by the constant v(t j ) (i.e., using the right-

endpoint estimate); over this interval of time, you travelled a distance of approximately

v(t j )∆t . The total distance travelled, then, is approximately

n∑
j=1

v(t j )∆t .

y

t0

y  =  v(t)

a b∆t

v(tj)Δt

The right-endpoint estimate for area under y = v(t) estimates displacement.

In the limit, as we take more and more shorter and shorter time intervals, we obtain the

exact change in position (displacement) as∫ b

a
v(t ) d t .

Therefore, the total displacement is the area under the velocity–time graph y = v(t ).

Note that this integrand is expressed as a function of t , and d t indicates that we integrate

over t . If we used v(x) and d x instead, the meaning would be identical:∫ b

a
v(t ) d t =

∫ b

a
v(x) d x.

The variable t (or x) just indexes the values of the integrand; it is only used for the in-

tegral’s own bookkeeping purposes. It is known as a dummy variable, analogous to the

dummy variable in summation notation, like the j in
∑5

j=1 j 2.
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Areas above and below the axis

So far we have only considered functions f (x) whose graphs are above the x-axis, i.e.,

f (x) > 0. But, of course, a graph can go below the x-axis. We now consider this situation.

When we computed the right-endpoint estimate, we approximated the area under the

graph y = f (x) by rectangles of width ∆x = 1
n (b − a) and height f (x j ). The important

point now is that, if f (x j ) is negative, then f (x j )∆x is negative and we obtain the negative

of the area of the rectangle. So when the graph of y = f (x) is below the x-axis, our method

approximates the negative of the area between the graph and the x-axis.

In regions where the graph of y = f (x) is above the x-axis (i.e., f (x) > 0), a definite inte-

gral calculates the area between the graph and the x-axis. In regions where the graph is

below the x-axis (i.e., f (x) < 0), the integral calculates the negative of the area between

the graph and the x-axis. A general function f (x) is sometimes positive and sometimes

negative, so the integral calculates the signed area, that is, the total area above the x-axis

minus the total area below the x-axis.

y

x
0 b

a
+ +

– –

The integral counts areas above/below the x-axis as positive/negative.

When we have a velocity–time graph y = v(t ), the signed area has a natural interpreta-

tion. The regions where the graph is below the t-axis occur when v(t ) < 0, i.e., the velocity

is negative and you are going backwards. When you are going backwards, your change

in position is negative. Your total displacement is given by your total forwards move-

ments minus your total backwards movements; these correspond to the regions above

and below the t-axis. Thus signed area corresponds to displacement. The total area en-

closed between the graph and the axis, on the other hand, is the total distance travelled,

forwards and backwards.

In general, to find the total area enclosed between a graph and the axis, we find where

the graph crosses the axis and compute the areas separately. See the following example.
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Example

1 Find
∫ 2

0
(−x2 −x +2) d x.

2 Find the area of the shaded region.

3 If your velocity at time t is given by

v(t ) = −t 2 − t + 2, then what is your

displacement and your distance trav-

elled between time t = 0 and t = 2?

y

x
0 2

y = –x2 – x + 2

Solution

1 ∫ 2

0
(−x2 −x +2) d x =

[
−1

3
x3 − 1

2
x2 +2x

]2

0

=
(
−8

3
−2+4

)
− (

0
)=−2

3
.

2 The area is partly above and partly below the x-axis. Factorising

−x2 −x +2 =−(x −1)(x +2),

we find the x-intercept is at x = 1. Therefore the total area shown is∫ 1

0
(−x2 −x +2) d x −

∫ 2

1
(−x2 −x +2) d x

=
[
−1

3
x3 − 1

2
x2 +2x

]1

0
−

[
−1

3
x3 − 1

2
x2 +2x

]2

1

=
((
−1

3
− 1

2
+2

)
− (

0
))−((

−8

3
−2+4

)
−

(
−1

3
− 1

2
+2

))

=
(7

6
−0

)
−

(
−2

3
− 7

6

)
= 7

6
−

(
−11

6

)
= 3.

3 Your displacement is
∫ 2

0 v(t ) d t , which was computed in part 1, and is −2
3 (i.e., you

end up 2
3 backwards of where you started). Your total distance travelled is given by

the area calculated in part 2, which is 3.

Beware! Computing integrals often involves many fractions, subtractions and negative

signs, as in the above example! It is good practice to carefully bracket all terms, as shown.
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Exercise 11

Find the area shown, both by integration and directly.

y

x
0 2

y = x + 1

–2

Exercise 12

a Compute
∫ 2

−2
(x3 −x) d x.

b What is the total area enclosed between the graph of y = x3 − x and the x-axis, from

x =−2 to x = 2?

Properties of the definite integral

Definite integrals obey rules similar to those for indefinite integrals. The following theo-

rem is analogous to one for indefinite integrals.

Theorem (Linearity of integration)

a If f and g are continuous functions on the interval [a,b], then∫ b

a

(
f (x)± g (x)

)
d x =

∫ b

a
f (x) d x ±

∫ b

a
g (x) d x.

b If f is a continuous function on [a,b], and k is a real constant, then∫ b

a
k f (x) d x = k

∫ b

a
f (x) d x.

The endpoints on a definite integral obey the following theorem.

Theorem (Additivity of integration)

Let f : [a,b] → R be continuous, where a,b are real numbers. Let c be a real number

between a and b. Then∫ b

a
f (x) d x =

∫ c

a
f (x) d x +

∫ b

c
f (x) d x.
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As with many mathematical statements, it’s useful to understand these two theorems

both algebraically (in terms of antiderivatives) and geometrically.

For instance, we can think of the second theorem (additivity of integration) as saying

geometrically that, if we consider the signed area between y = f (x) and the x-axis from

x = a to x = b, then this signed area is equal to the sum of the signed area from x = a to

x = c and that from x = c to x = b. Alternatively, if we let F (x) be an antiderivative of f (x),

we can regard the theorem as just expressing that

F (b)−F (a) = (
F (c)−F (a)

)+ (
F (b)−F (c)

)
.

This piece of algebra and the fundamental theorem of calculus together give a rigorous

proof of the theorem.

Exercise 13

Find a geometric interpretation of part (b) of the first theorem of this section (linearity

of integration). You may assume the graph of y = f (x) lies above the x-axis. Also find an

interpretation in terms of antiderivatives.

We have stated the second theorem (additivity of integration) so that a < c < b. But in

fact, this theorem works when a,b,c are in any order, as long as f , g are defined and

continuous over the appropriate intervals. We just have to make sense of integrals which

have their terminals ‘in the wrong order’. When a > b, we define∫ b

a
f (x) d x =−

∫ a

b
f (x) d x.

We can think of this as saying that, when x goes backwards from a to b, we count areas

as negative. In our area estimates, ∆x = 1
n (b −a) is the negative of the rectangle widths.

This fits with our previous definitions, as you can show in the following exercise.

Exercise 14

Let f : R→ R be a continuous function, and let F (x) be an antiderivative of f (x). Using

the fundamental theorem of calculus, show that for any real numbers a,b (even when

a > b),∫ b

a
f (x) d x = F (b)−F (a).

Exercise 15

Find
∫ 0

5
(−2x −3) d x.

(Careful with signs! Should your answer be positive or negative?)
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Area between two curves

So far we have only found areas between the graph y = f (x) and the x-axis. In general

we can find the area enclosed between two graphs y = f (x) and y = g (x). If f (x) > g (x),

then the desired area is that which is below y = f (x) but above y = g (x), which is∫ b

a

(
f (x)− g (x)

)
d x.

This formula works regardless of whether the graphs are above or below the x-axis, as

long as the graph of f (x) is above the graph of g (x). (Can you see why?)

y

x0

y  =  f(x)

v(tj)∆t y  =  g(x)

In general, two graphs y = f (x) and y = g (x) may cross. Sometimes f (x) may be larger

and sometimes g (x) may be larger. In order to find the area enclosed by the curves, we

can find where f (x) is larger, and where g (x) is larger, and then take the appropriate

integrals of f (x)− g (x) or g (x)− f (x) respectively.

Example

Find the area enclosed between the graphs y = x2 and y = x, between x = 0 and x = 2.

y

x
0 2

y  =  x2

y  =  x
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Solution

Solving x2 = x, we see that the two graphs intersect at (0,0) and (1,1). In the interval

[0,1], we have x ≥ x2, and in the interval [1,2], we have x2 ≥ x. Therefore the desired

area is∫ 1

0
(x −x2) d x +

∫ 2

1
(x2 −x) d x =

[
1

2
x2 − 1

3
x3

]1

0
+

[
1

3
x3 − 1

2
x2

]2

1

=
((1

2
− 1

3

)
− (

0
))+((8

3
−2

)
−

(1

3
− 1

2

))

=
(1

6
−0

)
+

(
2

3
−

(
−1

6

))

= 1

6
+ 5

6
= 1.

Links forward

Integration and three dimensions

So far we have used integration to calculate areas, which are 2-dimensional. Integration

can also be used to obtain 3-dimensional volumes.

For instance, take a graph y = f (x) in the x–y plane, and consider adding a third dimen-

sion: points in 3-dimensional space have coordinates (x, y, z), and there is now also a

z-axis. The figures below show the graph of y =p
x, for 0 ≤ x ≤ 5, in the plane and then

adding a z-axis.

y

x
0

y

xz
0

y =  x

We can now consider rotating the curve around the x-axis. As we do, the curve sweeps

out a surface, and the area under the curve sweeps out a 3-dimensional solid. The solid
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has rotational symmetry about the x-axis and is called a solid of revolution.

y

xz

We can estimate the area under the graph y = f (x) in the plane by subdividing the x-

interval and forming rectangles. Rotating these rectangles about the x-axis, we estimate

the volume of the solid of revolution by cylinders.

y

xx z

y

z

y

Use our usual notation: we consider the graph of y = f (x) between x = a and x = b, and

we divide the interval [a,b] into n subintervals [x0, x1], . . . , [xn−1, xn] of width ∆x. As

we have seen, for the right-endpoint estimate, the rectangles have width ∆x and height

f (x j ), and hence area f (x j )∆x. Similarly, the cylinders have radius f (x j ) and width ∆x,

and hence volume π f (x j )2∆x. We can estimate the volume of the solid of revolution as∑n
j=1π f (x j )2∆x. Taking the limit as n →∞, the volume of the solid of revolution is

∫ b

a
π f (x)2 d x.

More generally, if we have a solid bounded by the two parallel planes x = a and x = b, and

at each value of x in [a,b] the cross-sectional area of the solid is A(x), then the volume of

the solid is∫ b

a
A(x) d x.
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Using this idea, it’s possible to derive the formulas for the volumes of pyramids, prisms,

and other solids. In higher mathematics courses one studies 3-dimensional (and higher-

dimensional) volumes using multiple integrals.

Arc length

How long is a piece of string? If the piece of string is given as a graph y = f (x) then its

length can be calculated using integration.

As we have now seen many times, we consider the curve between x = a and x = b and

split the x-interval into n subintervals [x0, x1], . . . , [xn−1, xn] of length ∆x. Over each

subinterval there is an arc segment that travels ∆x to the right and ∆y upwards, where

∆y = f (x j )− f (x j−1). Approximating the arc by straight line segments, the length of each

line segment is
√

(∆x)2 + (∆y)2. This gives an estimate for the length of the curve as

n∑
j=1

√
(∆x)2 + (∆y)2 =

n∑
j=1

√
1+

(∆y

∆x

)2
∆x.

y

x
0 ∆x 1

1

2 3 4

∆y

∆y

∆x

∆x

∆x
∆y

∆y

Taking the limit as n →∞, the length of the curve is given by∫ b

a

√
1+

(d y

d x

)2
d x =

∫ b

a

√
1+ f ′(x)2 d x.

Difficulties with antiderivatives

We saw in the modules on differentiation that many functions can be differentiated. In-

deed, knowing how to differentiate elementary functions, and using the product, chain

and quotient rules, we can find the derivative of most functions we come across.

So far in this module, we have been able to antidifferentiate every function we encoun-

tered. But as it turns out, there are some relatively simple functions for which the an-

tiderivative has no simple formula. Although there are many techniques and tricks for
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finding antiderivatives, there are no rules as simple as the product, chain and quotient

rules for differentiation.

For an interesting and important example, consider the function f : R→ R defined by

f (x) = e−x2
.

y

x
0

Graph of f (x) = e−x2
.

It is easy to differentiate f (x) using the chain rule: f ′(x) = −2xe−x2
. However, the an-

tiderivative of f (x) has no simple formula. Yet the integral of f (x) is very important,

because it essentially describes the normal distribution, which is fundamental to proba-

bility and statistics.

It is possible to show that the integral of f (x), over the whole real line, is∫ +∞

−∞
e−x2

d x =p
π.

This may seem to be a surprising result; it is not clear at all where the π came from.2

Some clever techniques and higher mathematics, which are beyond our scope here, such

as area integrals and polar coordinates, can be used to obtain this answer.

History and applications

The differential and integral calculus, as we have discussed it in these modules, using an-

tiderivatives and the fundamental theorem of calculus, was developed in the 17th cen-

tury by such mathematicians as Pierre de Fermat, James Gregory, Isaac Barrow, Isaac

Newton and Gottfried Wilhelm Leibniz — but principally by Newton and Leibniz. How-

ever, some precursors to integration were known in ancient times.

Several ancient Greek philosophers and mathematicians considered the problem of cal-

culating the area bounded by a curve. In the 5th and 4th centuries BCE, Antiphon and

2 Lord Kelvin, the mathematical physicist and engineer, once joked that a mathematician is a person for

whom this equation is as obvious as the equation 2+2 = 4 is to the average person!
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Eudoxus developed the idea of finding the area bounded by a curve by inscribing poly-

gons in it, now known as the method of exhaustion. The idea is to inscribe infinitely

many polygons within the curve, which do not overlap and which cover the entire area,

so that the sum of the areas of polygons approaches the area bounded by the curve.

The method of exhaustion was perhaps taken furthest by Archimedes, who used it in

the 3rd century BCE to perform calculations of areas and volumes bounded by circles,

ellipses, spheres and cylinders. By calculating the area of the polygons inside and outside

a circle, he was able to show that 223
71 < π < 22

7 . He was also able to compute the area

bounded by a chord in a parabola.

Though our notation is very different, Archimedes would have been able to calculate an

integral like∫ 1

−1
(1−x2) d x.

It’s interesting to compare our ‘modern’ (17th century CE) technique to Archimedes’. We

would compute this area as∫ 1

−1
(1−x2) d x =

[
x − x3

3

]1

−1
=

(
1− 1

3

)
−

(
(−1)−

(
−1

3

))
= 2

3
+ 2

3
= 4

3
.

Although Archimedes did not have coordinate geometry, or even symbolic algebra, to

work with, we can give a rough outline of his ideas in his work Quadrature of the parabola.

(For further details, see the article Archimedes’ quadrature of the parabola revisited listed

in the References section.)

y

x
M

C

BA

G I

1
2–3

4– 1
4– 1

2
1
2

3
4

1
4–1 1

F

D

H

E

Using Archimedes’ technique to find the area under a parabola.



A guide for teachers – Years 11 and 12 • {33}

We begin by inscribing a triangle in the parabola. Let A = (−1,0) and B = (1,0) be the

intersection points of the chord (i.e., the x-axis) with the parabola, as shown in the dia-

gram. Let M = (0,0) be the midpoint of AB , and let C = (0,1). The area of 4ABC is 1, as

it has width 2 and height 1.

We next inscribe two more triangles in the parabola, built on 4ABC . Let D = (−1
2 ,0) be

the midpoint of AM and let E = ( 1
2 ,0) be the midpoint of B M . We draw a line from D

parallel to the axis of the parabola (i.e., the y-axis), intersecting AC at F and intersecting

the parabola at G = (−1
2 , 3

4 ). Similarly, we draw a line from E parallel to the parabola’s

axis, intersecting BC at H and intersecting the parabola at I = ( 1
2 , 3

4 ). We consider the

two triangles 4AGC and 4B IC .

To compute the area of 4AGC , we consider the segment FG . The area is given by half the

‘height’ FG times the width of 4AGC in the x-direction. The width (in the x-direction)

is half that of 4ABC , i.e., 1. To compute FG , note that 4ADF is similar to 4AMC , so
DF
AD = MC

AM and hence DF = AD · MC
AM = 1

2 . Thus FG = DG −DF = 3
4 − 1

2 = 1
4 ; the ‘height’ of

4AGC is a quarter that of 4ABC . As 4AGC has half the width and a quarter the height

of 4ABC , it has an eighth the area. Similarly, we can compute that 4B IC has an eighth

the area of 4ABC .

As we proceed, we inscribe more and more triangles inside the parabola. In the next

step we inscribe four triangles, after that we inscribe eight triangles. At the nth stage,

we inscribe 2n triangles in the gaps between previous triangles. Archimedes was able to

show that, at each stage, the triangles all have half the width and a quarter the height of

the triangles from the previous stage, and hence an eighth the area.

The total area of all the triangles is given by a geometric series:

1+ 2

8
+ 22

82 + 23

83 +·· · = 1+ 1

4
+ 1

42 + 1

43 +·· · .

Using the formula

1+ r + r 2 +·· · = 1

1− r

for the limiting sum of a geometric series, the total area is

1

1− 1
4

= 4

3
.

In this way, Archimedes succeeded in computing the area under the parabola.

Note. Archimedes actually did better than this. He used his technique to compute the

area bounded by any chord in a parabola; the chord considered here is a special one

(perpendicular to the axis of the parabola).
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Appendix

A comparison of area estimates, and Simpson’s rule

We have mentioned several different ways of estimating the area under a curve: left-

endpoint, right-endpoint, midpoint and trapezoidal estimates. It’s interesting to com-

pare them.

Recall that we consider the function f (x) over the interval [a,b] and divide the interval

into n subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn] each of width ∆x = 1
n (b −a).

All of the estimates discussed give the approximate area under y = f (x) in the form of

a sum of products of values of f with the width ∆x. In fact, the left-endpoint, right-

endpoint and trapezoidal estimates are all of the form[
c0 f (x0)+ c1 f (x1)+ c2 f (x2)+·· ·+cn−1 f (xn−1)+ cn f (xn)

]
∆x.

(The midpoint rule is slightly different, since it evaluates the function f at the midpoints

of subintervals.) The coefficients c j are compared in the following table.

The coefficients in the formulas for area estimates

Estimate c0 c1 c2 c3 c4 . . . cn−2 cn−1 cn

left endpoint 1 1 1 1 1 . . . 1 1 0

right endpoint 0 1 1 1 1 . . . 1 1 1

trapezoidal 1
2 1 1 1 1 . . . 1 1 1

2

Simpson 1
3

4
3

2
3

4
3

2
3 . . . 2

3
4
3

1
3

There is another estimate, called Simpson’s rule, which takes a slightly different set of

coefficients, as shown in the table. It requires that the number of subintervals n is even.

The coefficients start at 1
3 , then alternate between 4

3 and 2
3 , before ending again at 1

3 .

(It is as if every second coefficient in the list for the trapezoidal estimate donated 1
6 to

its neighbours.)

Explicitly, the estimate from Simpson’s rule for the area under y = f (x) between x = a

and x = b is[1

3
f (x0)+4

3
f (x1)+2

3
f (x2)+4

3
f (x3)+2

3
f (x4)+·· ·+2

3
f (xn−2)+4

3
f (xn−1)+1

3
f (xn)

]
∆x.

Although the coefficients may appear somewhat bizarre, Simpson’s rule almost always

gives a much more accurate answer than any of the other estimates mentioned. We’ll see

why in the next section.
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Exactness of area estimates

Consider some simple functions f (x) — constant, linear, quadratic — and see how the

various estimates fare in approximating the integral
∫ b

a f (x) d x.

First suppose f (x) is a constant function. In this case, we obtain an exactly correct an-

swer for the area under the graph from the left-endpoint, right-endpoint, midpoint or

trapezoidal estimate. The area under y = f (x) is itself a rectangle; breaking it up into

rectangles or trapezia, we still have the exactly correct area. This is true regardless of the

number of subintervals n: we could split [a,b] into just one subinterval, or a million; in

all cases we obtain the exactly correct answer.

y

x
0 ba ba

y

x0

Area under a constant function. Area under a linear function,
correctly estimated by midpoint or

trapezoidal estimate.

Next suppose f (x) is a (non-constant) linear function. In this case the left- and right-

endpoint estimates will definitely not give you the correct answer. However, the mid-

point and trapezoidal estimates will give you the exactly correct answer. The midpoint

estimate builds rectangles which have exactly the same amount of area above and below

the line. And breaking the area under y = f (x) into trapezia gives the exactly correct area.

Again this is true whatever number of subintervals we take.

However, when f (x) is a quadratic function, in general none of the left-endpoint, right-

endpoint, midpoint or trapezoidal estimates will give the correct area. Let’s consider the

function f (x) = x2, and see how the midpoint and trapezoidal estimates fare. We’ll just

take one subinterval, n = 1, so ∆x = b −a.

First, the midpoint estimate M is just

M = f
( a +b

2

)
∆x =

(1

4
a2 + 1

2
ab + 1

4
b2

)(
b −a

)
.

Next, the trapezoidal estimate T (again with only one subinterval) is

T =
(1

2
f (a)+ 1

2
f (b)

)
∆x =

(1

2
a2 + 1

2
b2

)(
b −a

)
.
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The correct answer, on the other hand, is∫ b

a
x2 d x =

[
x3

3

]b

a
= 1

3
b3 − 1

3
a3 = 1

3

(
a2 +ab +b2)(b −a

)
.

Here we used the factorisation b3 −a3 = (b −a)(a2 +ab +b2).

Note that M and T contain very similar terms to the correct answer. Indeed, we can

combine the midpoint and trapezoidal estimates to get the exact answer! Observe that

1

3

(
2M +T

)= 1

3

(
b −a

)(
a2 +ab +b2)= ∫ b

a
x2 d x.

This combination of the midpoint and trapezoidal rules will in fact give us an exactly

correct answer for the integral of any quadratic function.

This new area estimate is nothing other than Simpson’s rule. Writing out 1
3 (2M +T ) for

a general function f (x), from the definitions of the midpoint and trapezoidal rules, we

have

2

3
M + 1

3
T = (

b −a
) (

1

6
f (a)+ 2

3
f
( a +b

2

)
+ 1

6
f (b)

)

= b −a

2

(
1

3
f (a)+ 4

3
f
( a +b

2

)
+ 1

3
f (b)

)
.

This pattern of coefficients 1
3 , 4

3 , 1
3 is exactly Simpson’s rule with two subintervals; if we

take 1
3 (2M+T ) for the midpoint and trapezoidal estimates with n subintervals, we obtain

Simpson’s rule with 2n subintervals.

Simpson’s rule is very accurate because it gets quadratic integrals exactly right. It does

this by taking the midpoint and trapezoidal estimates — the previous best estimates, giv-

ing exactly correct answers for linear integrals — and combining them. We can also think

of Simpson’s rule as approximating a function by parabolic segments and computing the

integrals of the parabolic segments. It turns out that Simpson’s rule actually gets cubic

integrals exactly right as well!

Functions integrable and not

The theory of integration that we have discussed was developed rigorously by Bernhard

Riemann, and this type of integral is known as the Riemann integral.

As we have seen, the Riemann integral calculates the area under the curve y = f (x) over

the interval [a,b] by approximating it with n rectangles (or trapezia) of equal width, and

in the limit, as n →∞, the estimate approaches the true area.
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Riemann integration works for any function f : [a,b] → R that is continuous — roughly,

when the graph y = f (x) can be drawn without taking your pen off the paper. It also

works for any piecewise continuous function — where you may take your pen off the

paper, but only a finite number of times.

A function f (x) where the area estimates (based on n rectangles or trapezia) approach

the true integral as n →∞ is called Riemann integrable. The previous paragraph, then,

says that any piecewise continuous function is integrable.3

As an example of a non-integrable function, consider the following rather strange func-

tion f : R→R,

f (x) =
1 if x is rational

0 if x is irrational.

This function is discontinuous. In fact, near any real number x, there is a rational num-

ber arbitrarily close, and there is an irrational number arbitrarily close. So f (x) is discon-

tinuous at every real number x.

This example of a non-integrable function is quite pathological, and unlikely to arise in

real-world situations. There is, however, a theory of integration that can integrate even

functions like these. It is called Lebesgue integration and it is developed in university

mathematics courses.

Answers to exercises

Exercise 1

Since x0, x1, . . . , x j are all separated by distance 1
n (b −a) =∆x, we have

x j = (x j −x j−1)+ (x j−1 −x j−2)+·· ·+ (x1 −x0)+x0

= j ∆x +x0

= a + j ∆x.

In the last equality we used the fact that x0 = a, by definition.

3 It turns out that a function may have infinitely many discontinuities and still be Riemann integrable. The

Riemann–Lebesgue theorem says that a function f : [a,b] →R is integrable if and only if it is bounded and its

set of discontinuities has measure zero. The concept of measure zero is, however, well beyond the scope of

these notes.
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Exercise 2

The two subintervals are [0,2] and [2,4], each of width ∆x = 2, with respective midpoints

1 and 3. So the area estimate is[
f (1)+ f (3)

]
∆x = (2+12) ·2 = 28.

Exercise 3

Over each subinterval [x j−1, x j ], the three estimates give rectangles of the same width

but different heights. For the left-endpoint, midpoint and right-endpoint estimates, re-

spectively, the heights are f (x j−1), f
(1

2 (x j−1+x j )
)

and f (x j ). Now by definition x j−1 < x j

and obviously the midpoint 1
2 (x j−1 +x j ) lies between them, so

x j−1 <
x j−1 +x j

2
< x j .

As f is an increasing function, we have

f (x j−1) ≤ f
( x j−1 +x j

2

)
≤ f (x j ).

It follows that the rectangles for the left-endpoint estimate are shorter than the rectan-

gles for the midpoint estimate, which are shorter again than those for the right-endpoint

estimate. This gives the desired inequalities.

When f is decreasing, we have the opposite inequalities

f (x j−1) ≥ f
( x j−1 +x j

2

)
≥ f (x j ),

which imply

left-endpoint estimate ≥ midpoint estimate ≥ right-endpoint estimate.

Exercise 4

With the interval [a,b] divided into n subintervals [x j−1, x j ], for j = 1, . . . ,n, and ∆x =
1
n (b −a), as usual, we have

left-endpoint estimate = [
f (x0)+ f (x1)+·· ·+ f (xn−1)

]
∆x,

right-endpoint estimate = [
f (x1)+ f (x2)+·· ·+ f (xn)

]
∆x,

average = 1

2

([
f (x0)+·· ·+ f (xn−1)

]
∆x + [

f (x1)+·· ·+ f (xn)
]
∆x

)
= 1

2

(
f (x0)+2 f (x1)+·· ·+2 f (xn−1)+ f (xn)

)
∆x

=
[1

2
f (x0)+ f (x1)+·· ·+ f (xn−1)+ 1

2
f (xn)

]
∆x

= trapezoidal estimate.
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Exercise 5

Divide [0,1] into n subintervals [x0, x1], . . . , [xn−1, xn], so x j = j
n and ∆x = 1

n . The right-

endpoint estimate for the area is then

n∑
j=1

f (x j )∆x =
n∑

j=1
f
( j

n

) 1

n
=

n∑
j=1

( j

n

) 1

n
= 1

n2

n∑
j=1

j .

Using the formula
∑n

j=1 j = 1
2 n(n +1) gives the right-endpoint estimate as

n(n +1)

2n2 = n2 +n

2n2 = 1

2

(
1+ 1

n

)
.

Taking the limit as n →∞, the exact area under the curve is

lim
n→∞

1

2

(
1+ 1

n

)
= 1

2
.

The area under the curve is just a right-angled triangle with height 1 and base 1, so we

can confirm that its area is 1
2 ·1 ·1 = 1

2 .

Exercise 6

a f ′(x) = xn

b f ′(x) = (ax +b)n .

Exercise 7

a We can rewrite this as
∫

(−2x +3)−
1
2 d x, so the integrand is of the form (ax +b)n . We

obtain −(−2x +3)
1
2 + c =−p3−2x + c.

b Rewriting as
∫

(−2x + 3)−2 d x, the integrand is again of the form (ax +b)n , and we

obtain

1

2
(−2x +3)−1 + c = 1

2(3−2x)
+ c.

Exercise 8∫ (
3x2 +x

1
3
)

d x = x3 + 3

4
x

4
3 + c

Exercise 9

a Let F (x) be an antiderivative of f (x) and let G(x) be an antiderivative of g (x), so∫
f (x) d x = F (x)+ c1 and

∫
g (x) d x =G(x)+ c2, where c1,c2 are constants. Then the

derivative of (F ±G)(x) is F ′(x)±G ′(x) = f (x)±g (x), hence F ±G is an antiderivative

of f ± g , and
∫ (

f (x)± g (x)
)

d x = F (x)±G(x)+ c, where c is a constant. Noting that

the sum of two constants is a constant gives the desired equality.
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b Let F (x) be an antiderivative of f (x), so
∫

f (x) d x = F (x)+ c, where c is a constant.

Then the derivative of (kF )(x) is kF ′(x) = k f (x), hence kF is an antiderivative of k f

and
∫

k f (x) d x = kF (x)+C , where C is a constant. As a constant times k is another

constant, we have the desired equality.

Exercise 10∫ 8

0
(3x2 + 3

p
x) d x =

[
x3 + 3

4
x

4
3

]8

0
=

(
512+ 3

4
·16

)
− (

0+0
)= 512+12 = 524

Exercise 11

The graph y = x +1 crosses the x-axis at x =−1, so the desired area is∫ 2

−1
(x +1) d x −

∫ −1

−2
(x +1) d x =

[
1

2
x2 +x

]2

−1
−

[
1

2
x2 +x

]−1

−2

=
((

2+2
)− (1

2
−1

))
−

((1

2
−1

)
− (

2−2
))

=
(
4−

(
−1

2

))
−

(
−1

2
−0

)
= 9

2
+ 1

2
= 5.

Alternatively, we can compute the areas of the triangles directly. The left triangle has

height 1 and base 1, and so area 1
2 . The right triangle has height 3 and base 3, and so

area 9
2 . The total area is 5.

Exercise 12

a
∫ 2

−2
(x3 −x) d x =

[
1

4
x4 − 1

2
x2

]2

−2
= (4−2)− (4−2) = 0

b Factorising x3 − x = (x + 1)x(x − 1), we see the graph has intercepts at x = −1,0,1.

It is above the x-axis for −1 < x < 0 and x > 1, and below the x-axis for x < −1 and

0 < x < 1. We compute four separate integrals:∫ −1

−2
(x3 −x) d x =

[
1

4
x4 − 1

2
x2

]−1

−2
=

(1

4
− 1

2

)
− (

4−2
)=−1

4
−2 =−9

4
,

∫ 0

−1
(x3 −x) d x =

[
1

4
x4 − 1

2
x2

]0

−1
= (

0
)− (1

4
− 1

2

)
= 1

4
,

∫ 1

0
(x3 −x) d x =

[
1

4
x4 − 1

2
x2

]1

0
=

(1

4
− 1

2

)
− (

0
)=−1

4
,

∫ 2

1
(x3 −x) d x =

[
1

4
x4 − 1

2
x2

]2

1
= (

4−2
)− (1

4
− 1

2

)
= 9

4
.

Thus the total area is
9

4
+ 1

4
+ 1

4
+ 9

4
= 5.
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Exercise 13

The equation
∫ b

a k f (x) d x = k
∫ b

a f (x) d x has the geometric interpretation that the signed

area under the graph of y = k f (x) between x = a and x = b is k times the area under the

graph of y = f (x). Indeed, the graph of y = k f (x) is obtained from the graph of y = f (x)

by a dilation of factor k from the x-axis. Algebraically, letting F be an antiderivative of f ,

we have
∫ b

a k f (x) d x = [
kF (x)

]b
a = kF (b)−kF (a) = k

[
F (x)

]b
a = k

∫ b
a f (x) d x.

Exercise 14

If a < b, then the equation follows immediately from the fundamental theorem of calcu-

lus. If a > b, then
∫ b

a f (x) d x =−∫ a
b f (x) d x =−(

F (a)−F (b)
)= F (b)−F (a), as desired.

Exercise 15

As a reality check: for x between 0 and 5, the integrand is negative; and x is going back-

wards from 5 to 0; so the answer should be positive.∫ 0

5
(−2x −3) d x = [−x2 −3x

]0
5 = (0−0)− (−25−15) = 0− (−40) = 40.
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