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Functions II

Assumed knowledge

This module builds on the module Functions I. It assumes knowledge of that module and

also the modules required for it:

• Algebra review

• Coordinate geometry

• Trigonometric functions and circular measure

• Exponential and logarithmic functions.

Motivation

The importance of the concept of a function to modern mathematics was explained in

the module Functions I. In this module, we shall develop five aspects of the theory.

1 Arithmetic of functions. We shall define how to add, subtract, multiply and divide

functions.

2 Odd and even functions.

3 Composition of functions. In particular, we shall see that the order of composition

is important, so that sin(x2) and (sin x)2 are completely different functions.

4 Geometrical transformations. We shall see that many functions can be understood

in terms of a geometrical transformation, such as a translation or a reflection.

5 Functions and their inverses. We shall investigate which functions have inverses.

For example, the functions in the following pairs are inverses of each other:

• f (x) = x +2 and g (x) = x −2

• f (x) = 2x and g (x) = x

2
.

We shall develop a sufficiently general concept of inverses to cover the example of x2

and
p

x, where we have (
p

x)2 = x and
p

x2 = x, but with some restrictions on x.
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All of these ideas are important in differential calculus and in curve sketching.

In Functions I, we covered:

• the concept of a function

• the difference between functions and relations

• the vertical-line test

• domains and ranges

• interval notation

• standard function notation.

In this module, we shall build on these ideas.

Content

The arithmetic of functions

Just as numbers can be added, subtracted, multiplied and divided to form other num-

bers, so functions can be added, subtracted, multiplied and divided to form other func-

tions.

We have already seen in the TIMES module Polynomials (Year 10) that polynomials can

be added, subtracted, multiplied and divided. The definitions given there are consistent

with the definitions for functions in general.

In later sections of this module, we will look at two other ways of forming new functions:

composition of functions and finding the inverse of a function.

Throughout this module, we consider real functions, that is, functions f : D →R, where

the domain D is a subset of R.

Addition and subtraction of functions

If f and g are functions with domains D f and Dg , then the sum of the functions f +g is

defined by

( f + g )(x) = f (x)+ g (x).

The domain of f + g is D f ∩Dg . That is, the function f + g is defined only where both f

and g are defined.
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For example, let f (x) = ex and g (x) = 1
x , where the domain of f is R and the domain of g

is R\ {0}. Then the function f + g has domain R∩ (R\ {0}) =R\ {0}, with

( f + g )(x) = ex + 1

x
.

Similarly, if f and g are functions with domains D f and Dg , then the difference of the

functions f − g is defined by

( f − g )(x) = f (x)− g (x).

The domain of f − g is D f ∩Dg .

Products and quotients of functions

If f and g are functions with domains D f and Dg , then the product of the functions f ·g
is defined by

( f · g )(x) = f (x) · g (x).

The domain of f · g is D f ∩Dg .

For example, using the functions f (x) = ex and g (x) = 1
x from above, we have

( f · g )(x) = ex · 1

x
= ex

x
.

If f and g are functions with domains D f and Dg , then the quotient of the functions
f

g
is defined by

f

g
(x) = f (x)

g (x)
.

The domain of
f

g
is { x ∈ D f ∩Dg : g (x) 6= 0}.

Odd and even functions

For most functions f (x), replacing x with −x changes the function dramatically. For

some functions, however, there is either no change or just a change in sign. For example,

if f (x) = x6, then f (−x) = x6. On the other hand, if f (x) = x7, then f (−x) = −x7. The

notion of odd and even functions generalises these two examples.

Definitions

• A function f is even if f (−x) = f (x), for all x in the domain of f .

• A function f is odd if f (−x) =− f (x), for all x in the domain of f .
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Example

1 The polynomial function f (x) = x2 +x4 +x6 is even.

2 The polynomial function f (x) = x +x3 +x5 is odd.

3 The polynomial function f (x) = 1+x +x2 is neither odd nor even.

4 We observe that

sin(−x) =−sin x and cos(−x) = cos x,

for all x. Thus sin x is an odd function and cos x is an even function. The function

tan x is also an odd function, but on a slightly restricted domain: all reals except the

odd multiples of π2 .

5 The functions f (x) = ex and g (x) = loge x are neither odd nor even functions.

Note. It follows from the definition that, if a function f is odd or even, then its domain

must be symmetric about the origin. That is, it follows that x is in the domain of f if and

only if −x is in the domain of f .

Exercise 1

a Show that the only function f : R→ R which is both odd and even is the constant

function f (x) = 0.

b Show that every polynomial f (x) = a0 + a1x + a2x2 + ·· · + an−1xn−1 + an xn can be

written as the sum of an odd function and an even function.

c Show that every function f : R→R can be written as the sum of an odd function and

an even function in a unique way.

Exercise 2

Prove the following:

a The sum of two odd functions is odd, and the sum of two even functions is even.

b The product of two even functions is even, the product of two odd functions is even,

and the product of an odd function and an even function is odd.

c Let f and g be functions on the same domain, and assume that each function takes

at least one non-zero value. If f is odd and g is even, then the sum f + g is neither

odd nor even.
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Symmetries of odd and even functions

We have observed that cos x is an even function. From the following figure, we can see

that its graph y = cos x is symmetric about the y-axis. That is, it has reflection symmetry

about the y-axis. Every even function has this property.

0

1

–1

x

y
 y = cos x

 (a, cos a) (–a, cos a)

–3𝜋
 2

–𝜋
 2

𝜋
2

–3𝜋
 2

3𝜋
2

We have also observed that sin x is an odd function. Its graph y = sin x has rotational

symmetry through 180◦ about the origin. Every odd function has this property.

0
x

y

–

 y = sin x

 (a, sin a)

 (–a, –sin a)

Composites of functions

In this section, for convenience and simplicity, we will focus our attention on functions

with domain and codomain the reals.

h

f = g 0 h

g

• 
x

 • 
h(x)

 •
g(h(x))ℝ ℝ ℝ
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Without worrying about technicalities such as domains and ranges, we can imagine ap-

plying one function h to a real number and then applying another function g to the im-

age. The result of this is called the composite or the composition of the two functions h

and g . In the above diagram, we can write

f (x) = g (h(x)).

A common notation for this situation is f = g ◦h.

For example, consider the two functions h(x) = x +3 and g (x) = sin x, and let f = g ◦h.

Then

f (x) = g (h(x)) = g (x +3) = sin(x +3).

What if we swap the order and look at j = h ◦ g ? We have

j (x) = h(g (x)) = h(sin x) = sin(x)+3.

Clearly, sin(x +3) 6= sin(x)+3, for any value of x.

Thus the order in which we compose two functions is important.

Notes.

1 Throughout this module, we shall assume that if we have an expression involving a

trigonometric function, then the variables are measured in radians. Check that your

calculator is in radian mode by verifying that sin(2)+3 ≈ 3.9093.

2 The rule a +b = b +a, for all real numbers a,b, is the commutative law for addition.

The fact that we can have g ◦h 6= h ◦g , for some functions g ,h, says that composition

of functions is not commutative.

3 Composition of functions is not the same as multiplication of functions:

f = h ◦ g means f (x) = h(g (x))

j = h · g means j (x) = h(x) g (x).

So, for example, if g (x) = x2 and h(x) = sin x, then f (x) = sin(x2) and j (x) = x2 sin x.

Clearly, h · g = g ·h, since h(x) g (x) = g (x)h(x) for all x.

4 It is possible to compose more than two functions. In particular, if f (x) = k(h(g (x))),

then f = k ◦h ◦ g .

5 For all functions k,h, g , we have (k ◦h)◦g = k ◦ (h ◦g ). So composition of functions is

associative. This allows us to write k ◦h ◦ g without any ambiguity.
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Example

Let g (x) = x2, h(x) = x +2 and j (x) = sin x. Write down the formula for k = j ◦h ◦ g .

Solution

We have

g (x) = x2

h(g (x)) = x2 +2

j (h(g (x))) = sin(x2 +2).

So k(x) = sin(x2 +2).

Example

Write

f (x) = 1

cos(7log2(x2 +3))

as the composite of six functions.

Solution

Let

f1(x) = x2

f2(x) = x +3

f3(x) = log2 x

f4(x) = 7x

f5(x) = cos x

f6(x) = 1

x
.

Then

f = f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1.
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We can compose functions whose domains are subsets of the real numbers. Consider

functions g : A → R and h : B → R, where A ⊆ R and B ⊆ R. Then g (h(x)) is defined for

each x in the domain of h such that h(x) is in the domain of g . So we obtain a composite

function g ◦h : C →R with domain C = { x ∈ B : h(x) ∈ A }.

For example, consider the functions g : R+ → R and h : [0,π] → R given by g (x) = loge x

and h(x) = cos x. Then the composite function g ◦h is given by (g ◦h)(x) = loge (cos x),

with domain { x ∈ [0,π] : cos x ∈R+ } = [0, π2 ).

Geometric transformations of graphs of functions

The graph of a function can be changed to produce the graph of a new function using:

• vertical or horizontal translations

• reflections in either axis

• stretching from either axis.

For example, if f (x) = sin x and g (x) = x +2, then

( f ◦ g )(x) = sin(x +2) and (g ◦ f )(x) = sin(x)+2.

Both of these can be thought of as translations of f (x) = sin x, so clearly we cannot talk

about the translation of a function by 2.

0
x

y

y

 y = sin (x + 2)sin2

2π–2π–2–2–π–2

0
x

 y = sin x + 2
3

2

1

π–π
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On the other hand, the image of the graph of a function under a rotation is usually not

the graph of a function. Rotations of graphs of quadratic functions are discussed briefly

in the module Quadratics.

Translations

Vertical translations in general

Consider the graph of y1 = f (x) and the graph of y2 = f (x)+7, as shown in the following

diagram.

0

a + 7

a

x

y
 y2 = f(x) + 7

 y1 = f(x)

 

We call y2 = f (x)+7 the vertical translation 7 units up of y1 = f (x). Similarly, y3 = f (x)−7

is the vertical translation 7 units down of y1 = f (x).

Vertical translations of parabolas

The standard parabola y = x2 in shown on the left in the following diagram. We can

describe each point on the parabola in terms of a parameter p; the corresponding point

is (p, p2).

y

x
0

y = x2

(p,p2)

y

x
0

y = x2 + 7

(p,p2 + 7)

7

If y = x2 is translated 7 units up, we obtain y = x2 +7, which is also parametrised by p;

the corresponding point is (p, p2 +7).
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Horizontal translations of parabolas

Suppose that the standard parabola y = x2 is translated 3 units to the right. The vertex

(0,0) is moved to (3,0), which is the vertex of the parabola y = (x −3)2. Their graphs are

as follows.

y

x
vertex 

y = x2

(p,p2)ax
is

 o
f 

sy
m

m
et

ry

y

x

y = (x–3)2

(p + 3,p2)ax
is

 o
f 

sy
m

m
et

ry

vertex (3,0)(0,0)

Clearly, the point (p, p2) is moved to the point (p +3, p2). If x = p +3 and y = p2, then

y = (x −3)2. In the same way, a translation 5 units to the left maps y = x2 to y = (x +5)2,

with the point (p, p2) moved to the point (p −5, p2).

Horizontal translations in general

Now we consider what happens to the graph of an arbitrary function y = f (x) when it is

translated a units to the right.

y

x0 c

y = f(x)

(x,f(x))

y

x0 c + a

y = f(x – a)

(x + a,f(x))
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The translation moves the point (x, y) to the point (x+a, y). We can view this translation

as a mapping from the coordinate plane to itself, given by

(x, y) 7→ (x ′, y ′), where x ′ = x +a and y ′ = y.

Here we have x = x ′−a and y = y ′. So the graph y = f (x) maps to y ′ = f (x ′−a). That is,

y = f (x) maps to y = f (x −a).

Example

Consider the graph of y = x3.

1 If the graph is translated 5 units to the right, then what are the coordinates of the

inflexion point and what is the equation of the image?

2 If the graph is translated 4 units to the left and 7 units up, then what are the coordi-

nates of the inflexion point and what is the equation of the image?

Solution

1 The point of inflexion (0,0) is translated to (5,0). The equation of the image of the

graph is y = (x −5)3.

2 The point of inflexion (0,0) is translated to (−4,7). Translating the graph y = x3 to the

left by 4 units gives y = (x +4)3. Then translating 7 units up yields y = (x +4)3 +7.

y = (x – 5)3 y = (x + 4)3 + 7

y y

x x
0 0

y

x
05

(–4,7)

y = x3
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General translations

A general translation T of the plane is given by

T (x, y) = (x +a, y +b),

for some real numbers a,b. In particular, we have T (0,0) = (a,b). Clearly, this mapping is

the composite of a horizontal translation through a and a vertical translation through b.

Thus, for example, it maps the graph of y = x2 to the graph of y = (x −a)2 +b.

Exercise 3

Find the translation which maps the graph of y = x2 to y = x2+4x +10. Sketch the graph

of y = x2 +4x +10.

Summary for translations

The following table gives the image of the graph of y = f (x) under various translations,

with a and b positive constants.

Translations of the graph y = f (x)

Translation Image

a units up y = f (x)+a

a units down y = f (x)−a

b units to the right y = f (x −b)

b units to the left y = f (x +b)

a units up and b units to the right y = f (x −b)+a

a units down and b units to the left y = f (x +b)−a

We note that sometimes:

• ‘up’ is expressed as ‘in the positive direction of the y-axis’

• ‘down’ is expressed as ‘in the negative direction of the y-axis’

• ‘to the right’ is expressed as ‘in the positive direction of the x-axis’

• ‘to the left’ is expressed as ‘in the negative direction of the x-axis’.
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Reflections

Assume we are given a line l in the plane. We can reflect any point P in the line l to obtain

a point Q = Rl (P ), as shown in the following diagram.

X

P

Q
𝑙

The point Q is found by dropping a perpendicular from P to l , which meets l at X . We

take Q on this perpendicular such that P X = XQ, with Q 6= P unless P lies on l . This

describes a mapping Rl from the plane R2 to itself. It is an involution, meaning that if

you perform the mapping twice you get the identity.

There are three important special cases:

• when l is the x-axis, y = 0

• when l is the y-axis, x = 0

• when l is the line y = x.

The third case is important when determining inverses of functions, and will be dis-

cussed in the next section of this module.

Reflection in the x-axis

Reflection in the x-axis maps the point (a,b) to the point (a,−b). Thus, if we consider

the graph of y = f (x) and reflect it in the x-axis, we obtain the graph of y =− f (x).

0
(a,–b)

x

y

 y = –f(x)

 y = f(x)

(a,b)

For example, the standard parabola y = x2 is reflected to the parabola y =−x2. By apply-

ing suitable horizontal and vertical translations to y = −x2, we can obtain any parabola

of the form y =−x2 +ax +b.
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Reflection in the y-axis

Reflection in the y-axis maps the point (a,b) to the point (−a,b). Thus, if we consider

the graph of y = f (x) and reflect it in the y-axis, we obtain the graph of y = f (−x).

0
x

y

 y = f(–x) y = f(x) y = f(x)

0
x

y

For example, the graph y = x2 is mapped to itself, and the graph y = x3 is mapped to

y =−x3.

Summary for reflections in an axis

We summarise reflections of a function y = f (x) in the axes in the following table.

Reflections of the graph y = f (x)

Reflection Image

Reflection in the x-axis y =− f (x)

Reflection in the y-axis y = f (−x)

Exercise 4

a Show that a function f (x) is even if and only if the graph of y = f (x) is mapped to

itself by reflection in the y-axis.

b Show that a function y = f (x) is odd if and only if the graph of y = f (x) is mapped to

itself by the composition of the reflections in the two coordinate axes.

Isometries

An isometry of the plane is a transformation which preserves distances between points.

Isometries include rotations, translations, reflections, glide reflections and the identity

map. In fact, it can be proved that every isometry can be obtained as a composition of at

most three reflections.
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Isometries are sometimes also called congruence transformations. Two figures that can

be transformed into each other by an isometry are said to be congruent.

So far in this section, we have looked at translations and reflections in the axes. Now

we consider a family of transformations which are not isometries: the transformations

which are ‘stretches’ from one of the axes.

Some transformations which are not isometries

Stretches from the x-axis

The mapping (x, y) 7→ (x,3y) is called a stretch from the x-axis. Under this mapping, the

point (a, a2) on the graph of y = x2 is sent to the point (a,3a2) on the graph of y = 3x2.

This is shown in the following diagram.

y

x

y = 3x2

y = x2

(a,a2)

(a,3a2)

We can describe this mapping as

(x, y) 7→ (x ′, y ′), where x ′ = x and y ′ = 3y.

Thus x = x ′ and y = y ′

3
, and so the graph of y = x2 maps to

y ′

3
= (x ′)2. That is, y = x2

maps to y = 3x2.

Stretches from the y-axis

The mapping (x, y) 7→ (3x, y) is called a stretch from the y-axis. We can describe this

mapping as

(x, y) 7→ (x ′, y ′), where x ′ = 3x and y ′ = y.

Thus x = x ′

3
and y = y ′, and so the graph of y = x2 maps to y ′ =

( x ′

3

)2
. That is, y = x2

maps to y = x2

9
.
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Summary for stretches from the axes

We have seen that (x, y) 7→ (x,3y) under a stretch from the x-axis by the factor 3. In

general, the mapping (x, y) 7→ (x,k y) is the stretch from the x-axis by the factor k, where

k > 0. Similarly, the mapping (x, y) 7→ (kx, y) is the stretch from the y-axis by the factor k,

where k > 0. We summarise this in the following table.

Stretches of the graph y = f (x)

Stretch Transformation Image

Stretch from x-axis by the factor k, for k > 0 (x, y) 7→ (x,k y) y = k f (x)

Stretch from y-axis by the factor k, for k > 0 (x, y) 7→ (kx, y) y = f
( x

k

)

Note. The composition of these two stretches gives a transformation (x, y) 7→ (kx,k y).

This is called a dilation. A dilation is an example of a similarity transformation.

Functions and their inverses

We begin with a simple example.

Example

Let f (x) = 2x and g (x) = x

2
.

Apply the function g to the number 3, and then apply f to the result:

g (3) = 3

2
and f

(3

2

)
= 3.

A similar thing happens if we first apply f and then apply g :

f (3) = 6 and g (6) = 3.

It is clear that this will happen with any starting number. This is expressed as

f (g (x)) = x, for all x

g ( f (x)) = x, for all x.

The function f reverses the effect of g , and the function g reverses the effect of f . We

say that f and g are inverses of each other.
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As another example, we have

( 3
p

x)3 = x and
3
√

x3 = x,

for all real x. So the functions f (x) = x3 and g (x) = 3
p

x are inverses of each other.

If x ≥ 0, then (
p

x)2 = x and
p

x2 = x. If x < 0, then
p

x is not defined. So the functions

f (x) = x2 and g (x) = p
x are inverses of each other, but we need to be careful about

domains. We will look at this more carefully later in this section.

Basics

In an earlier section of this module, we defined the composite of two functions h and g

by (g ◦h)(x) = g (h(x)).

Definitions

• The zero function 0: R→R is defined by 0(x) = 0, for all x.

• The identity function id: R→R is defined by id(x) = x, for all x.

Example

Consider a function f : R→R.

1 Prove that

a 0◦ f = 0

b f ◦ id = f

c id◦ f = f .

2 Show that f ◦0 does not necessarily equal 0.

Solution

1 a We have (0◦ f )(x) = 0( f (x)) = 0, for all x, and so 0◦ f = 0.

b We have ( f ◦ id)(x) = f (id(x)) = f (x), for all x, and so f ◦ id = f .

c We have (id◦ f )(x) = id( f (x)) = f (x), for all x, and so id◦ f = f .

2 Consider the function given by f (x) = 2, for all x. Then f ◦0(x) = f (0(x)) = f (0) = 2,

and so f ◦0 6= 0.
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Definition

Let f be a function with both domain and range all real numbers. Then the function g is

the inverse of f if

f (g (x)) = x, for all x, and

g ( f (x)) = x, for all x.

That is, f ◦ g = id and g ◦ f = id.

Notes.

• Clearly, if g is the inverse of f , then f is the inverse of g .

• We denote the inverse of f by f −1. We read f −1 as ‘ f inverse’. Note that f inverse has

nothing to do with the function
1

f
.

Example

Let f (x) = x +2 and let g (x) = x −2. Show that f and g are inverses of each other.

Solution

We have

f (g (x)) = f (x −2) = x −2+2 = x, for all x ( f ◦ g = id)

and

g ( f (x)) = g (x +2) = x +2−2 = x, for all x (g ◦ f = id).

Hence, the functions f and g are inverses of each other.

Exercise 5

Find the inverse of

a f (x) = x +7

b f (x) = 4x +5.
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Example

Let f (x) = ax +b with a 6= 0. Find the inverse of f .

Solution

We have x = f (x)−b

a
, for all x. So let g (x) = x −b

a
. Then

f (g (x)) = f
( x −b

a

)
= a

( x −b

a

)
+b = x

g ( f (x)) = g (ax +b) = (ax +b)−b

a
= x,

for all x. Hence, g is the inverse of f .

Exercise 6

a Show that f (x) = x5 and g (x) = x
1
5 are inverses of each other.

b Find the inverse of f (x) = x3 +2.

We do not yet have a general enough concept of inverses, since x2 and
p

x do not fit into

this framework, nor do ex and loge x. We will give a definition that covers these functions

later in this section.

The horizontal-line test

Consider the function f (x) = x2, which has domain the reals and range A = { x : x ≥ 0}.

Does f have an inverse?

The following graph shows that it does not. We have f (−2) = f (2) = 4, and so f −1(4)

would have to take two values, −2 and 2! Hence, f does not have an inverse.

y

x
0

4

–2 2

y = x2

y = 4
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This idea can be formulated as a test.

Horizontal-line test

Let f be a function. If there is a horizontal line y = c that meets the graph y = f (x) at

more than one point, then f does not have an inverse.

Note. Remember that the vertical-line test determines whether a relation is a function.

Example

Consider the function

f (x) = x3 −x = (x +1)x(x −1).

Its graph is shown in the following diagram.

y

y = x3 – x

x
0–1 1

Does f have an inverse?

Solution

The line y = 0 meets the graph at three points. By the horizontal-line test, the function f

does not have an inverse.
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Finding inverses

Suppose that f (x) and g (x) are inverse functions. Then f (a) = b if and only if g (b) = a. So

(a,b) is a point on the graph y = f (x) if and only if (b, a) is a point on the graph y = g (x).

The two points (a,b) and (b, a) are closely related, as the next theorem shows.

Theorem

The points P (a,b) and Q(b, a) are reflections of each other in the line y = x.

y

x0

y = x
X

P(a,b)

Q(b,a)

Proof
Let X be the point where PQ meets the line y = x. Then

Gradient of PQ = b −a

a −b
=−1, Gradient of OX = 1,

and so PQ is perpendicular to OX . We also have OP 2 = a2 + b2 = OQ2, giving

OP =OQ.

It now follows that 4OX P ≡4OXQ (RHS), since OX is a common side, OP =OQ

and OX P = 90◦ =OXQ. Hence, X P = XQ.

We have shown that PQ ⊥OX and X P = XQ. So Q is the reflection of P in the line

y = x, as required.

Note. An alternative way to show that P X = QX in this proof is by using the formula for

the distance of a point from a line (see the module Coordinate geometry). The formula

gives P X = |b −a|p
2

=QX .

Corollary

Assume that f has an inverse. Then the graph of y = f −1(x) is the reflection of the graph

of y = f (x) in the line y = x.
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We have seen that reflection in the line y = x interchanges the points (a,b) and (b, a). So

a function y = f (x) is reflected to the relation x = f (y). This is illustrated in the following

diagram. A point (a,b) on the graph y = f (x) is mapped to the point (b, a), which lies on

x = f (y).

y

x0

x = f(y)

(b,a)

(a,b)

y = f(x) y = x

This gives us a method for finding the inverse of y = f (x) in some circumstances: Write

down x = f (y) and then, if possible, make y the subject of this new equation.

For example, suppose y = 4x +7. Swapping x and y yields

x = 4y +7

4y = x −7

y = x −7

4
.

Check that the functions f (x) = 4x +7 and g (x) = x −7

4
are inverses of each other.

As a second example, suppose y = x3 +2. Swapping x and y yields

x = y3 +2

y3 = x −2

y = 3
p

x −2.

Exercise 7

Consider the function f (x) = 3x +2.

a Find the inverse of f .

b Show that the graph y = f (x) meets the graph y = f −1(x) on the line y = x.

c Draw a sketch showing y = f (x) and y = f −1(x).
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Increasing and decreasing functions

Consider two functions f1 and f2 with domain R and range R. Assume that:

• f1 is strictly increasing, that is, a < b =⇒ f1(a) < f1(b)

• f2 is strictly decreasing, that is, a < b =⇒ f2(a) > f2(b).

Then both f1 and f2 satisfy the horizontal-line test, and so they both have inverses. For

example, the functions f1 and f2 could be those shown in the following diagram.

y

x0

y = f1(x)

y

x0

y = f2(x)

Notes.

1 In the module Applications of differentiation, we see that:

• If f ′(x) > 0, for all x, then the function f is strictly increasing.

• If f ′(x) < 0, for all x, then the function f is strictly decreasing.

All such functions will satisfy the horizontal-line test.

2 It is easy to write down examples where it is not possible to give a formula for the

inverse. For example, suppose

f (x) = x5 +3x3 +7x −8.

Then

f ′(x) = 5x4 +9x2 +7 ≥ 7, for all x.

Thus f is a strictly increasing function, and hence f has an inverse function. The

graph of f is y = x5 +3x3 +7x −8. If we want to find the inverse of f , we first inter-

change x and y . This gives

x = y5 +3y3 +7y −8.

From the look of this equation, it does not seem possible to make y the subject, and

indeed this the case. (There is a discussion of the solution of polynomial equations

in the module Polynomials.) So we see that it is not always possible to explicitly write

down a formula for the inverse, even when it exists.
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Restricted domains and ranges

To deal with some of the simplest and most important examples, we have to generalise

the idea of an inverse function by restricting the domain or the range or both.

For any set S, we shall use idS to denote the identity function on S. That is, the function

idS : S → S is given by idS(x) = x, for all x ∈ S.

Example

Define the set

A = { x ∈R : x ≥ 0}.

Then A consists of all the positive reals together with 0. Now define the functions:

f : A → A, f (x) = x2 and g : A → A, g (x) =p
x.

Note that domain( f ) = range( f ) = A and domain(g ) = range(g ) = A. We have

( f ◦ g )(x) = f (g (x)) = f (
p

x) = (
p

x)2 = x, for all x ∈ A,

and so f ◦ g = idA . Similarly, we can check that g ◦ f = idA . It is natural to say

g = f −1 and f = g−1.

Building on the previous example, we can also define functions h : A → A and j : A → A

by h(x) = x4 and j (x) = x
1
4 , and we can show that h ◦ j = j ◦h = idA . We say that j = h−1

and h = j−1.

There is no reason why this idea cannot be generalised to functions whose domain and

range are not necessarily the same. We first give a definition which allows us to work in

this situation.

Definition

Let f be a function with domain X and range Y . Then a function g with domain Y and

range X such that

f ◦ g = idY and g ◦ f = idX

is the inverse of f . Clearly, if g is the inverse of f , then f is the inverse of g . We write

g = f −1 and f = g−1.
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Example

Let f : R→R+ be defined by f (x) = 2x , and let g : R+ →R be defined by g (x) = log2 x.

y

x
0 1

1

y = 2x

y = log2 x

Then

( f ◦ g )(x) = f (g (x)) = f (log2 x) = 2log2 x = x, for all x > 0.

That is, f ◦ g = iR+ . Also,

(g ◦ f )(x) = g ( f (x)) = g (2x ) = log2(2x ) = x, for all x ∈R.

That is, g ◦ f = iR. So f = g−1 and g = f −1.

Trigonometric functions

A scientific calculator reports that sin−1(0.5) = π
6 . However, sin( 5π

6 ) = 0.5 as well. So why

does sin−1(0.5) not equal 5π
6 ?

We start by considering the graph of y = sin x.

y

x0

y = sin x

–2𝜋 2𝜋–𝜋 𝜋

This function spectacularly fails the horizontal-line test: whenever −1 ≤ c ≤ 1, the line

y = c meets the graph y = sin x infinitely often!

To obtain an inverse function, we must restrict the domain of the function sin x so that,

for each c with −1 ≤ c ≤ 1, there is exactly one value of x with sin x = c. Choice is involved,

but clearly one would want to include the first quadrant [0, π2 ] in the domain, and to

choose an interval if possible.
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The natural choice is to define y = sin x, for x ∈ [−π
2 , π2 ]. This function has an inverse,

called sin−1 x, with domain [−1,1] and range [−π
2 , π2 ]. We have:

• sin(sin−1 x) = x, for all x with −1 ≤ x ≤ 1

• sin−1(sin x) = x, for all x with −π
2 ≤ x ≤ π

2 .

y

x
0

y = sin–1 x

–1

𝜋
2

1

y

x0

y = sin x

–1

𝜋
2

–𝜋
 2

–𝜋
 2

1

In summary: sin−1 a = b if and only if sinb = a, for a ∈ [−1,1] and b ∈ [−π
2 , π2 ].

Exercise 8

a Work out how to restrict the domain of cos x and how to define cos−1 x.

b Repeat for tan x.

Links forward

Differentiation

In this module, we have seen various ways of forming new functions. How to differentiate

sums, differences, products, quotients, compositions and inverses is discussed in the

module Introduction to differential calculus. We repeat them here for convenience.

Theorem

Let f , g be differentiable functions. Then the derivative of f (x)+g (x) is f ′(x)+g ′(x), and

the derivative of f (x)− g (x) is f ′(x)− g ′(x). That is,

d

d x

[
f (x)+ g (x)

]= f ′(x)+ g ′(x),
d

d x

[
f (x)− g (x)

]= f ′(x)− g ′(x).

Theorem (Product rule)

Let f , g be differentiable functions. Then the derivative of their product is

d

d x

[
f (x) g (x)

]= f (x) g ′(x)+ g (x) f ′(x).
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Theorem (Quotient rule)

Let f , g be differentiable functions. Then the derivative of their quotient is

d

d x

[ f (x)

g (x)

]
= g (x) f ′(x)− f (x) g ′(x)(

g (x)
)2 .

Theorem (Chain rule)

Let f , g be differentiable functions. Then the derivative of their composition is

d

d x

[
f ◦ g (x)

]= d

d x

[
f (g (x))

]= f ′(g (x)) g ′(x).

Inverses

The derivative of an inverse function in terms of the original function is presented in the

module Introduction to differential calculus through the use of the chain rule. We give a

direct proof here and an example.

Theorem

Let y = f (x) be a strictly increasing, differentiable function on the interval (a,b). Then

the inverse function x = g (y) exists, and

g ′(y) = 1

f ′(x)
= 1

f ′(g (y))
.

Proof
As f is strictly increasing, the inverse function x = g (y) exists. Consider

g (y +k)− g (y)

k
.

Define

h = g (y +k)− g (y).

We are assuming f is differentiable, and so it is continuous. Thus its inverse g is

continuous. This implies that, as k → 0, g (y +k) → g (y) and so h → 0.

Since g (y +k) = x +h, we obtain y +k = f (x +h) and therefore k = f (x +h)− f (x).

We now have

g (y +k)− g (y)

k
= h

f (x +h)− f (x)
,

and so it follows that

g ′(y) = 1

f ′(x)
= 1

f ′(g (y))
.

The result also holds if the function f is strictly decreasing.
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Example

Let f : (−π
2 , π2 ) →R be given by f (x) = sin x. Find the derivative of f −1.

(This result is also established in the module The calculus of trigonometric functions.

Here we derive the result using the notation of the previous theorem.)

Solution

We first note that f is a strictly increasing function on this interval, and therefore the

inverse exists. Let y = f (x) and let g be the inverse function of f . Then x = g (y). By the

previous theorem, we have

g ′(y) = 1

f ′(x)

= 1

cos x

= 1

cos(g (y))

= 1

cos(sin−1 y)
.

Since sin−1 y ∈ (−π
2 , π2 ), we must have cos(sin−1 y) > 0. So we can use the Pythagorean

identity to obtain

g ′(y) = 1√
cos2(sin−1 y)

= 1√
1− sin2(sin−1 y)

= 1√
1− y2

.
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Definite integrals

We illustrate the use of inverses in determining definite integrals through an example.

Example

Find ∫ 2

1
loge x d x.

Solution

y

A B

C
21

x0

y = loge
 x

loge
 2

We note that ex and loge x are inverses of each other. From the diagram, we have

∫ 2

1
loge x d x = Area of rectangle O ABC −

∫ loge 2

0
e y d y

= 2loge 2− [
e y]loge 2

0

= 2loge 2−1.

It is clear that this technique can be used profitably in many similar situations.

Transformations of the plane

Composition of transformations

The geometrical transformations of the plane we have discussed in this module are func-

tions. For any of these transformations T , we have

T : R2 →R2.

For example, the translation 3 units to the right and 2 units down is defined by

T1(x, y) = (x +3, y −2).

The stretch from the y-axis by a factor of 3 is the transformation defined by

T2(x, y) = (3x, y).
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The reflection in the x-axis is given by

Rx (x, y) = (x,−y).

We now consider compositions of these transformations. For example, we have

T1 ◦T2(x, y) = T1(T2(x, y)) = T1(3x, y) = (3x +3, y −2).

Taking them in the opposite order, we obtain

T2 ◦T1(x, y) = T2(T1(x, y)) = T2(x +3, y −2) = (3x +9, y −2).

As expected, we did not get the same result. In general, composition of transformations

of the plane is not commutative.

On the other hand, composition of translations is commutative. This is easily shown, as

follows. Let S and T be two translations, defined by

S(x, y) = (x +a, y +b) and T (x, y) = (x + c, y +d).

Then

S ◦T (x, y) = S(T (x, y)) = S(x + c, y +d) = (x + c +a, y +d +b)

and

T ◦S(x, y) = T (S(x, y)) = T (x +a, y +b) = (x +a + c, y +b +d).

Hence, S ◦T = T ◦S. (Note that two transformations of the plane T1 and T2 are equal if

T1(x, y) = T2(x, y), for all (x, y) ∈R2.)

Inverses of transformations

Again, consider the translation 3 units to the right and 2 units down, which is defined by

T1(x, y) = (x +3, y −2).

We will find the inverse transformation. To do this, assume that there is a transforma-

tion T4, with T4(x, y) = (x ′, y ′), such that T1 ◦T4(x, y) = (x, y). We have

T1(T4(x, y)) = T1(x ′, y ′) = (x ′+3, y ′−2),

and therefore x ′+3 = x and y ′−2 = y . This gives

T4(x, y) = (x ′, y ′) = (x −3, y +2).

We can now check that T4 ◦T1(x, y) = (x, y) and T1 ◦T4(x, y) = (x, y), for all (x, y) ∈ R2. So

T4 is the inverse of the transformation T1. That is, T4 = T −1
1 .

Next consider the reflection in the x-axis, given by

Rx (x, y) = (x,−y).

We note that Rx ◦Rx (x, y) = Rx (x,−y) = (x,−(−y)) = (x, y). This means that Rx is the

inverse of itself. Earlier, we called this an involution.
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Groups of isometries

Recall that an isometry is a distance-preserving map from the plane R2 to itself.

Just as we have the identity function id onR, we have the identity transformation I onR2,

given by

I (x, y) = (x, y).

This transformation is clearly an isometry.

Now let E be the set of all isometries of the plane. We make the following observations:

• Closure. For all S,T ∈ E , we have S ◦T ∈ E .

• Associativity. For all R,S,T ∈ E , we have (R ◦S)◦T = R ◦ (S ◦T ).

• Identity. There is I ∈ E such that, for all T ∈ E , we have T ◦ I = I ◦T = T .

• Inverses. For each T ∈ E , there is an element T −1 ∈ E such that T ◦T −1 = T −1 ◦T = I .

These are the four defining properties of a group. Note again that the commutative prop-

erty does not necessarily hold.

Groups were first studied in depth by Galois when considering solutions of equations.

Group theory provides a powerful tool for studying symmetries, and so groups are used

in areas such as physics, chemistry and encryption.

Answers to exercises

Exercise 1

a Assume that f : R→ R is both even and odd. Let x ∈ R. Since f is even, we have

f (−x) = f (x), and since f is odd, we have f (−x) = − f (x). Therefore f (x) = − f (x),

which implies that f (x) = 0. So f is constant zero.

b Consider a polynomial f (x) = a0 + a1x + a2x2 +·· ·+ an xn . We will assume that n is

even. (The case that n is odd is similar.) Take

g (x) = a0 +a2x2 +a4x4 +·· ·+an xn

h(x) = a1x +a3x3 +a5x5 +·· ·+an−1xn−1.

Then f (x) = g (x)+h(x), with g (x) an even function and h(x) an odd function.
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c Suppose

f (x) = g (x)+h(x) (1)

such that g (x) is odd and h(x) is even. Then

f (−x) = g (−x)+h(−x)

=−g (x)+h(x). (2)

Adding equations (1) and (2) gives f (x)+ f (−x) = 2h(x), and we obtain

h(x) = f (x)+ f (−x)

2
and g (x) = f (x)− f (−x)

2
.

This gives us the uniqueness of g (x) and h(x). We can easily check that the function

g (x) defined this way actually is an odd function, and similarly that h(x) actually is

an even function.

Exercise 2

a If f1 and f2 are odd functions, then

( f1 + f2)(−x) = f1(−x)+ f2(−x) =− f1(x)− f2(x) =−( f1 + f2)(x),

so f1 + f2 is odd. If g1 and g2 are even functions, then

(g1 + g2)(−x) = g1(−x)+ g2(−x) = g1(x)+ g2(x) = (g1 + g2)(x),

so g1 + g2 is even.

b Suppose f1 and f2 are even, and g1 and g2 are odd. If h = f1 f2, then

h(−x) = f1(−x) f2(−x) = f1(x) f2(x) = h(x),

so h is even. If j = g1g2, then

j (−x) = g1(−x) g2(−x) =−g1(x)×−g2(x) = g1(x) g2(x) = j (x),

so j is even. If k = f1g1, then

k(−x) = f1(−x) g1(−x) = f1(x)×−g1(x) =− f1(x) g1(x) =−k(x),

so k is odd.

c Let f : D →R with f (a) 6= 0, for some a ∈ D , and let g : D →R with g (b) 6= 0, for some

b ∈ D . Assume that f is odd and g is even. Then

( f + g )(−a) = f (−a)+ g (−a)

=− f (a)+ g (a) since f is odd and g is even

6= f (a)+ g (a) since f (a) 6= 0

= ( f + g )(a).

So f + g is not even. Similarly, we can use b to show that f + g is not odd.
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Exercise 3

Let y = x2 +4x +10 = (x +2)2 +6. To map y = x2 to y = (x +2)2 +6, translate it 2 units to

the left and 6 units up.

y

x0

6

10

–2

Exercise 4

a First assume that f is even. Then f (−x) = f (x), for all x in the domain. So reflection

in the y-axis maps y = f (x) to y = f (−x) = f (x).

For the converse, assume that y = f (x) is mapped to itself under reflection in the

y-axis. Then y = f (−x) is y = f (x). Thus f (−x) = f (x), for all x in the domain of f ,

and so f is even.

b Note that y = f (x) is mapped to y = − f (x) by reflection in the x-axis, which is then

mapped to y = − f (−x) by reflection in the y-axis. If the resulting graph is y = f (x),

then f (x) =− f (−x), for all x in the domain of f , and so f is odd. Check the converse.

Exercise 5

a Let g (x) = x −7. Then

f (g (x)) = f (x −7) = x −7+7 = x

g ( f (x)) = g (x +7) = x +7−7 = x,

for all x. Hence, f and g are inverses of each other.

b Let g (x) = x −5

4
. Then

f (g (x)) = f
( x −5

4

)
= 4×

( x −5

4

)
+5 = x

g ( f (x)) = g (4x +5) = 4x +5−5

4
= x.

Thus f and g are inverses of each other.
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Exercise 6

a Note that domain( f ) = range( f ) =R and domain(g ) = range(g ) =R. We have

( f ◦ g )(x) = f (g (x)) = f (x
1
5 ) = (x

1
5 )5 = x

(g ◦ f )(x) = g ( f (x)) = g (x5) = (x5)
1
5 = x,

for all x ∈R. Thus f ◦ g = id and g ◦ f = id, as required.

b Let f (x) = x3 +2. We have x3 = f (x)−2 and so x = 3
√

f (x)−2. Take g (x) = 3
p

x −2.

This gives f ◦ g = id and g ◦ f = id, as required.

Exercise 7

The function f (x) = 3x +2 has graph y = 3x +2. To find the inverse, we swap x and y .

This gives

x = 3y +2

y = x −2

3
.

Thus the inverse is given by f −1(x) = x −2

3
. To find where the two lines meet, we solve

f (x) = f −1(x). This gives

3x +2 = x −2

3

9x +6 = x −2

x =−1.

Substituting x =−1 into y = 3x +2 yields y =−1. Hence, they meet on the line y = x.

y

x
(–1,–1)

2

2

y = x
y = 3x + 2

y = x – 2
 3
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Exercise 8

a Consider the graph of y = cos x.

0

1

–1

x

y

 y = cos x

–3𝜋
 2

–𝜋
 2

𝜋
2

–3𝜋
 2

3𝜋
2

We must restrict the domain of cos x so that, for each c with −1 ≤ c ≤ 1, there is

exactly one value of x such that cos x = c. We restrict the domain of cos x to the

interval [0,π]. This gives us a strictly decreasing function with domain [0,π] and

range [−1,1]. The inverse function cos−1 x has domain [−1,1] and range [0,π].

So cos−1 a = b if and only if cosb = a, for a ∈ [−1,1], b ∈ [0,π].

y

x
0

y = cos–1 x

–1

𝜋
2𝜋

2

1

y

x0

y = cos x

–1

𝜋

1

(1,0)

(–1,π)

b Consider the graph of y = tan x.

0
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2

1

x
2

y y = tan x

–
2

–3
2

3
2
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We restrict the domain of tan x to the interval (−π
2 , π2 ). This gives us a strictly in-

creasing function with domain (−π
2 , π2 ) and range R. The inverse function tan−1 x

has domain R and range (−π
2 , π2 ).

So tan−1 a = b if and only if tanb = a, for a ∈R, b ∈ (−π
2 , π2 ).

y

x0

y = tan–1x

–𝜋
 2

𝜋
2
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