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Exponential and
logarithmic
functions

Assumed knowledge

The content of the modules:

• Functions II

• Introduction to differential calculus

• Applications of differentiation

• Integration.

Furthermore, knowledge of the index laws and logarithm laws is assumed. These are

covered in the TIMES module Indices and logarithms (Years 9–10) and briefly revised at

the beginning of this module.

Motivation

The greatest shortcoming of the human race is our inability to understand

the exponential function.

— Albert A. Bartlett

Our world involves phenomena and objects on many different scales.

Repeated multiplication by 10 can rapidly transform a microscopically small number to

an astronomically large one. Multiplying by 10 a few times takes us immediately from

the scale of atoms and molecules to the scale of microbiology, insects, humans, cities,

continents, planets and beyond — from scales that are imperceptibly small to scales that

are almost unfathomably vast. There are only 17 orders of magnitude between the size

of a single human cell and the size of our solar system.1 Understanding the functions

1 A typical human cell is between 10−5 and 10−4 metres. The radius of the solar system, out to the orbit of

Neptune, is roughly 4.5×1012 metres.
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involved in such repeated multiplication — namely, exponential functions such as 10x

— is a useful step towards a grasp of these enormities.

Exponential functions, with all their properties of sudden growth and decay, arise in

many natural phenomena, from the growth of living cells to the expansion of animal

populations, to economic development, to radioactive decay. The quote from Professor

Bartlett at the start of this section was made in the context of human population growth.

The inverses of exponential functions — namely, logarithmic functions — occur promi-

nently in fields as diverse as acoustics and seismology.

To understand these natural processes of growth and decay, it is important, then, to un-

derstand the properties of exponential and logarithmic functions.

In this module, we consider exponential and logarithmic functions from a pure math-

ematical perspective. We will introduce the function y = ex , which is a solution of the

differential equation d y
d x = y . It is a function whose derivative is itself. In the module

Growth and decay, we will consider further applications and examples.

The module Indices and logarithms (Years 9–10) covered many properties of exponential

and logarithmic functions, including the index and logarithm laws. Now, having more

knowledge, we can build upon what we have learned, and investigate exponential and

logarithmic functions in terms of their rates of change, antiderivatives, graphs and more.

In particular, we can ask questions like: How fast does an exponential function grow? It

grows rapidly! But, with calculus, we can give a more precise answer.

A brief refresher

To jog your memory, we recall some basic definitions and rules for manipulating expo-

nentials and logarithms. For further details, we refer to the module Indices and loga-

rithms (Years 9–10).

Logarithms and exponentials are inverse operations. In particular, for a > 1,

x = ay ⇐⇒ y = loga x.

The following index laws hold for any bases a,b > 0 and any real numbers m and n:

am an = am+n am

an = am−n

(am)n = amn (ab)m = ambm

( a

b

)m = am

bm .
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Some simple consequences of the index laws are, for a > 0 and a positive integer n:

a0 = 1 a
1
n = n

p
a a−1 = 1

a
.

The following logarithm laws hold for any base a > 1, any positive x and y , and any real

number n:

loga 1 = 0 loga a = 1

loga(x y) = loga x + loga y loga
x

y
= loga x − loga y

loga
1

x
=− loga x loga(xn) = n loga x.

Also, recall the change of base formula:

logb x = loga x

loga b
,

for any a,b > 1 and any positive x.

Two approaches

In this module, we will introduce two new functions ex and loge x. We will do this in two

different ways.

The first approach develops the topic in an investigatory fashion, starting from the ques-

tion: ‘What is the derivative of 2x ?’ However, as we proceed, we will point out some

shortcomings of this approach.

Alternatively, we can begin from a definition of loge x as an integral, and then define ex

as its inverse. The story is then told in a completely different order.

The first approach is probably easier for most students to understand, but the second

approach is more concise and rigorous.

In general, when telling a mathematical story, there are various goals such as elegance,

rigour, practicality, generality and understandability. Sometimes these goals conflict,

and we have to compromise. Sometimes developing a subject in the most logically con-

cise way does not make for easy reading. As with any other subject, learning mathematics

from multiple perspectives leads to a deeper and more critical understanding.
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Content

How fast does an exponential function grow?

We will attempt to find the derivatives of exponential functions, beginning with 2x . This

is quite a long story, eventually leading us to introduce the number e, the exponential

function ex , and the natural logarithm. But we will then be able to differentiate functions

of the form ax in general.

The derivative of 2x

We begin by attempting to find the derivative of f (x) = 2x , which is graphed as follows.

y

x
0

1

y = 2x

Graph of f (x) = 2x .

Examining this graph, we can immediately say something about the derivative f ′(x).

The graph of y = 2x is always sloping upwards and convex down. For large negative x, it

is very flat but sloping upwards. As x increases, the graph slopes increasingly upwards; as

x increases past 0, the gradient rapidly increases and the graph becomes close to vertical.

Therefore, we expect f ′(x) to be:

• always positive

• increasing

• approaching 0 as x →−∞
• rapidly increasing for x positive

• approaching ∞ as x →∞.
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In other words, we expect f ′(x) to behave just like . . . an exponential function. (We will

see eventually that f ′(x) = loge 2 ·2x .)

Let’s first attempt to compute f ′(0) from first principles:

f ′(0) = lim
h→0

f (h)− f (0)

h

= lim
h→0

2h −1

h
.

This is not an easy limit to compute exactly, but we can approximate it by substituting

values of h.

Approximating f ′(0) for the function f (x) = 2x

h
2h −1

h
(to 6 decimal places)

0.001 0.693387

0.0001 0.693171

0.00001 0.693150

0.000001 0.693147

0.0000001 0.693147

From the table above, it appears that

f ′(0) = lim
h→0

2h −1

h
≈ 0.693147.

Let us press on and attempt to compute f ′(x) for x in general:

f ′(x) = lim
h→0

f (x +h)− f (x)

h

= lim
h→0

2x+h −2x

h

= lim
h→0

2x (2h −1)

h

= 2x · lim
h→0

2h −1

h
.
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In the last step, we are able to take the 2x through the limit sign, since it is independent

of h. Note that the final limit is exactly the expression we found for f ′(0). So we can now

express the derivative as

f ′(x) = f ′(0) ·2x

≈ 0.693147 ·2x .

We have found that the derivative of 2x is a constant times itself, confirming our initial

expectations. (We will see later that this constant is loge 2.)

The derivative of ax

There is nothing special about the number 2 above. If we take any number a > 1 and

consider f (x) = ax , the graph would have a similar shape to that of 2x , and we could

carry out similar computations for f ′(0) and f ′(x):

f ′(0) = lim
h→0

f (h)− f (0)

h
f ′(x) = lim

h→0

f (x +h)− f (x)

h

= lim
h→0

ah −1

h
, = lim

h→0

ax+h −ax

h

= ax · lim
h→0

ah −1

h
.

We have found that, for any a > 1, the function f (x) = ax has a derivative which is a

constant multiple of itself:

f ′(x) = ax · lim
h→0

ah −1

h

= f ′(0) ·ax .

However, we need to better understand the limit involved. Clearly, if we can choose the

value of a so that this limit is 1, then f ′(x) = f (x) and so f is its own derivative.

The number e

Let’s ponder further this limit for f ′(0), the derivative at 0 of f (x) = ax :

f ′(0) = lim
h→0

ah −1

h
.

We have already found that, when a = 2, the limit is approximately 0.693147. We can do

the same calculations for other values of a, and find the approximate limit. We obtain

the following table.
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Approximating f ′(0) for functions f (x) = ax

a lim
h→0

ah −1

h
(to 6 decimal places)

1 0

2 0.693147

3 1.098612

4 1.386294

5 1.609438

It appears that, when a increases, the limit for f ′(0) also increases. This is not too difficult

to prove.

Exercise 1

Show that, if 1 ≤ a < b and h > 0, then

ah −1

h
< bh −1

h
,

and hence explain why

lim
h→0

ah −1

h
≤ lim

h→0

bh −1

h
.

Geometrically, this means that, as a increases, the graph of y = ax becomes more sharply

vertical, and the gradient of the graph at x = 0 increases.

y

x
0

1

y = 2xy = 3x

Graphs of y = 2x and y = 3x with tangents shown at x = 0.
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When a = 2, we have a gradient at x = 0 of 0.69315. When a = 3, we have a gradient of

1.0986. So we expect that there is a single value of a, between 2 and 3, for which the

gradient at x = 0 is 1. It turns out that there is such a number,2 which we shall call e. The

number e is approximately 2.718281828.

Thus, the function f (x) = ex has f ′(0) = 1 and, since f ′(x) = f ′(0) ·ex , we have f ′(x) = ex .

The function ex is its own derivative. Equivalently, in Leibniz notation, y = ex satisfies

d y

d x
= ex or, equivalently,

d y

d x
= y.

The function f (x) = ex is often called the exponential function, and sometimes written

as exp x.

Note. This approach may appear to be a sleight of hand. We didn’t really ‘prove’ that the

derivative of ex is itself, we just defined e to make it true. But the key point is that there

is a number e that makes the function ex its own derivative. We have given an argument

(although not a rigorous proof) as to why there is such a number.

Summary

• We considered the derivative of f (x) = 2x and found that

f ′(x) = 2x · lim
h→0

2h −1

h

≈ 0.693147 ·2x ,

so f ′(x) is a constant multiple of f (x).

• We considered the derivative of the general function f (x) = ax , where a > 1, and

found that

f ′(x) = ax · lim
h→0

ah −1

h
,

so f ′(x) is a constant multiple of f (x).

• We defined the number e so that the function f (x) = ex is its own derivative, that is,

f ′(x) = f (x).

2 However, note we have not shown this. We have not shown that the limit limh→0
ah−1

h is a continuous

function of a; otherwise, this limit might never take the value 1. And we have not shown that the limit is

a strictly increasing function of a; if not, there might be multiple values of a for which the limit is 1. The

alternative treatment later in this module avoids these issues.
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Example

Define f : R→R by f (x) = ex2
. What is f ′(x)?

Solution

Use the chain rule. Let g (x) = ex and h(x) = x2, so that f (x) = g (h(x)). Then

f ′(x) = g ′(h(x)) ·h′(x)

= 2x ex2
.

Exercise 2

Find the derivatives of the following functions:

a f (x) = x2ex b f (x) = eex
.

We will next introduce the natural logarithm. We will then be able to better express

derivatives of exponential functions.

The natural logarithm

The logarithm to the base e is an important function. It is also known as the natural

logarithm. It is defined for all x > 0:

y = loge x ⇐⇒ x = e y .

The alternative notation ln x (pronounced ‘ell-en’ x) is often used instead of loge x.

y

x
0 1

y = loge x

Graph of y = loge x or, equivalently, x = e y .
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Since we know how to differentiate the exponential, we can now also differentiate the

natural logarithm. If y = loge x, then x = e y , so

d x

d y
= e y = x.

Now, by the chain rule, 1 = d y

d y
= d y

d x

d x

d y
, and so

d y

d x
= 1

d x
d y

= 1

x
.

Therefore, we conclude that the derivative of f (x) = loge x is f ′(x) = 1

x
.

Exercise 3

Give an alternative proof that the derivative of loge x is
1

x
, by differentiating both sides of

the equation

x = e loge x .

Knowing the derivative of loge x allows us to differentiate many related functions.

Example

Find the derivative of f (x) = loge (2x +5).

Solution

The chain rule gives

f ′(x) = 1

2x +5
·2 = 2

2x +5
.

In general, for any real constants a and b with a 6= 0, we can consider the function

f (x) = loge (ax +b). Its derivative is, again using the chain rule,

f ′(x) = a

ax +b
.

A warning about domains. Any logarithm function loga x, with base a > 1, is defined

only for x > 0; its domain is (0,∞). Yet the function
1

x
is defined for all x 6= 0, including

all negative x. Strictly speaking, the derivative of loge x is the function
1

x
, restricted to the

domain (0,∞).

In the previous example, loge (2x +5) is only defined when 2x +5 > 0, that is, x > −5
2 ; so

the functions f and f ′ both have domain (−5
2 ,∞).
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Exercise 4

Consider the function f : (−∞,0) → R defined by f (x) = loge (−x). Show that f ′(x) = 1

x
,

restricted to the domain (−∞,0).

Using the preceding exercise, we can construct a function which is defined for all x 6= 0,

and whose derivative is always
1

x
. We define f : R\{0} →R as

f (x) = loge |x| =
loge x if x > 0

loge (−x) if x < 0.

As both loge x and loge (−x) have derivative
1

x
, we conclude that f ′(x) = 1

x
for all x 6= 0.

y

x
0 1–1

y = logexy = loge(–x)

Graph of y = loge |x|, which is the union of the graphs
y = loge x, for x > 0, and y = loge (−x), for x < 0.

Exercise 5

What is the domain of the function f (x) = log2(3−7x)?

The derivative of 2x, revisited

We now obtain a simple answer to our original question.

Example

What is the derivative of f (x) = 2x ?
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Solution

Since 2 = e loge 2, we have f (x) = e loge 2·x . Using the chain rule, we obtain

f ′(x) = loge 2 ·e loge 2·x

= loge 2 ·2x .

Previously we found that f ′(x) ≈ 0.693147 ·2x . We now see that the constant is loge 2.

Exercise 6

Find the derivatives of the following functions:

a f (x) = 2x2
b f (x) = 34x2+2x−7.

Exercise 7

Use what we’ve done so far to explain why

lim
h→0

2h −1

h
= loge 2.

Derivatives of general exponential functions

Since we can now differentiate ex , using our knowledge of differentiation we can also

differentiate other functions.

In particular, we can now differentiate functions of the form f (x) = ekx , where k is a real

constant. From the chain rule, we obtain

f ′(x) = k ekx .

We saw in the previous section, when differentiating 2x , that it can be written as e loge 2·x ,

which is of the form ekx . The same technique can be used to differentiate any function

ax , where a is a positive real number. A function ax is just a function of the form ekx in

disguise.

Writing a as e loge a , we can rewrite f (x) = ax , using the index laws, as

f (x) = ax = (
e loge a)x = ex loge a .

The function is then in the form ekx (with k = loge a) and differentiating gives

f ′(x) = loge a ·ax .

So the derivative of ax is a constant times itself, and that constant is loge a.
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Exercise 8

Use what we’ve done so far to explain why, for any a > 0,

lim
h→0

ah −1

h
= loge a.

Exercise 9

Let f (x) = xx , for x > 0. Differentiate f (x) and find its stationary points.

Derivatives of general logarithmic functions

Consider a logarithmic function f (x) = loga x, where a > 1 is a constant. By using the

change of base rule, we can write f (x) in terms of the natural logarithm, and then differ-

entiate it:

f (x) = loga x = loge x

loge a

and so, since loge a is a constant, the derivative is

f ′(x) = 1

x loge a
.

Example

Differentiate f (x) = log2(3−7x).

Solution

Since

f (x) = loge (3−7x)

loge 2
,

noting that loge 2 is just a constant and using the chain rule, we have

f ′(x) = 1

loge 2
· 1

3−7x
· (−7)

= −7

(3−7x) loge 2
.
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Exercise 10

Consider f (x) = loga(x y) and g (x) = loga x + loga y , where a > 1 and x, y are positive. As

our notation suggests, think of x as a variable and y as a constant.

a Show that f ′(x) = g ′(x).

b Show that f (1) = g (1).

c Conclude that f (x) = g (x) for all positive x.

This gives an alternative proof of one of the logarithm laws.

Antiderivatives of exponential and logarithmic functions

We’ve seen various derivatives so far, including

d

d x
ex = ex and, more generally,

d

d x
ekx = k ekx ,

where k is any non-zero real constant. Also, we’ve seen

d

d x
loge x = 1

x
and, more generally,

d

d x
loge (ax +b) = a

ax +b
,

for ax +b > 0, where a,b are real constants with a 6= 0. From this we can deduce several

antiderivatives.

The basic indefinite integrals are∫
ex d x = ex + c and

∫
1

x
d x = loge x + c

and, more generally,∫
ekx d x = 1

k
ekx + c and

∫
1

ax +b
d x = 1

a
loge (ax +b)+ c,

where c as usual is a constant of integration.

We can use these antiderivatives to evaluate definite integrals.

Example

Find ∫ e2

e

1

x
d x.
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Solution∫ e2

e

1

x
d x = [

loge x
]e2

e

= loge (e2)− loge e = 2−1 = 1

Exercise 11

Prove that, for any x > 0,∫ x

1

1

t
d t = loge x.

Exercise 12

Prove that, for any x > 0 and n > 0,∫ xn+1

xn

1

t
d t = loge x.

Exercise 13

Differentiate f (x) = x loge x −x. Hence find the indefinite integral∫
loge x d x.

Warning! As we mentioned previously, loge x is only defined for x > 0, while
1

x
is defined

for all x 6= 0. So the equation∫
1

x
d x = loge x + c

is valid only for x > 0 and, more generally, the equation∫
1

ax +b
d x = 1

a
loge (ax +b)+ c

is valid only when ax +b > 0. Although it is more complicated, it is sometimes neces-

sary to consider the function loge |x|, which is defined for all x 6= 0 and which also has

derivative
1

x
. The equation∫

1

x
d x = loge |x|+ c

is valid for all x 6= 0, and the equation∫
1

ax +b
d x = 1

a
loge |ax +b|+ c

is valid for all x such that ax +b 6= 0.
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Graphing exponential functions

Having seen the general shape of the graphs y = ax , we can graph related functions, in-

cluding those obtained by transformations such as dilations, reflections or translations.

Let us first revise these transformations; for more details, we refer to the module Func-

tions II.

• A dilation in the x-direction from the y-axis with factor k maps

(x, y) 7→ (kx, y).

The plane is stretched out horizontally from the y-axis by a factor of k.

• A dilation in the y-direction from the x-axis with factor k maps

(x, y) 7→ (x,k y).

The plane is stretched vertically from the x-axis by a factor of k.

• The reflection in the y-axis maps

(x, y) 7→ (−x, y).

The plane is reflected horizontally in the vertical axis: everything in the plane on one

side of the y-axis goes to its mirror image on the other side of the y-axis.

• The reflection in the x-axis maps

(x, y) 7→ (x,−y).

The plane is reflected vertically in the horizontal axis.

• A translation in the x-direction by a units maps

(x, y) 7→ (x +a, y).

If a > 0, the translation is to the right, and if a < 0, the translation is to the left.

• A translation in the y-direction by a units maps

(x, y) 7→ (x, y +a).

If a > 0, the translation is upwards, and if a < 0, the translation is downwards.

Note that, as the x-axis is an asymptote for the graph y = ax , any graph obtained by

dilating, reflecting or translating such a graph will also have an asymptote.

Note also that, for any a > 0 with a 6= 1, the function y = ax has no critical points: the

derivative
d y

d x
= loge a · ax is never 0. A graph obtained from y = ax by dilations, reflec-

tions in the axes and translations also has no critical points.
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Example

Sketch the graph of y = 2x+1 −3.

Solution

This equation can be written as y = −3+ g (x +1) where g (x) = 2x . Hence the graph is

obtained from y = 2x by successively performing the following transformations:

• translation by 1 in the negative x-direction, which gives the graph of y = 2x+1

• translation by 3 in the negative y-direction, which gives the graph of y = 2x+1 −3.

These transformations shift the asymptote to y =−3.

Substituting x = 0 gives a y-intercept of −3+2 =−1. Substituting y = 0 gives 2x+1 = 3, so

that x = log2 3−1.

This is enough information to sketch the graph.

y

x
0

log23 – 1– 1

– 3

y = –3 + 2x+1

Note that, using the change of base rule, we can alternatively write the x-intercept of the

graph as

log2 3−1 = loge 3

loge 2
−1.

Exercise 14

Sketch the graph of y = 5−4 ·32x+1.
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When 0 < a < 1, the graph y = f (x) of the function f (x) = ax has a similar shape as for

the case a > 1, but now f (x) → 0 as x →∞ and f (x) →∞ as x →−∞.

y

x
0

1

1
2y = (   )x

Graph of f (x) = (1
2

)x .

Exercise 15

a Explain why the graph of y = (1
2

)x is obtained from the graph of y = 2x by reflecting

in the y-axis.

b Hence sketch the graph of y = 3− (1
2

)x+1.

Exercise 16

Consider the graph y = 3x . Explain why the following two transformations on the graph

have the same effect:

• dilation in the y-direction from the x-axis with factor 9

• translation by 2 units to the left (that is, in the negative x-direction).

Graphing logarithmic functions

For any a > 1, the functions f (x) = ax and g (x) = loga x are inverse functions, since

f (g (x)) = aloga x = x

and

g ( f (x)) = loga(ax ) = x.

The graphs of y = f (x) and y = g (x) are therefore obtained from each other by reflection

in the line y = x.
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y

x
0

y  =  x

1

1

y = loge x

y = ex

The symmetry between the graphs of y = ex and y = loge x.

The graph of the logarithmic function loga x, for any a > 1, has the y-axis as a vertical

asymptote, but has no critical points. Similarly, any other graph obtained from this graph

by dilations, reflections in the axes and translations also has a vertical asymptote and no

critical points.

Note. The graph of a logarithmic function does not have a horizontal asymptote. As x

becomes large positive, the graph of y = loga x becomes very flat: the derivative

d y

d x
= 1

x loge a

approaches 0. Thus, loga x increases very slowly. However loga x still increases all the

way to infinity:

loga x →∞ as x →∞.

One way to see this is to look at the symmetry in the graph above. The graph y = ax is

defined for all values of x, but when x is large the corresponding value of y is very large.

By symmetry, y = loga x takes all values of y , but when y is large the corresponding value

of x is very large.

Exercise 17

Prove directly that loga x can take an arbitrarily large value. Consider a large positive

number N . Does loga x ever take the value N ?
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Exercise 18

Show that there is a point on the graph of y = loge x such that, to go one unit upwards

along the graph, you have to go a million units to the right.

That is, find x and y such that

y = loge x and y +1 = loge (x +106).

Example

Draw the graph of y = 5 loge (2x +3)−1.

Solution

The equation can be written as y = 5 f
(
2(x + 3

2 )
)−1, where f (x) = loge x. Therefore, the

graph is obtained from the graph of y = loge x by successively applying the following

transformations:

• dilation by a factor of 1
2 in the x-direction from the y-axis, which gives the graph of

y = loge (2x)

• dilation by a factor of 5 in the y-direction from the x-axis, which gives y = 5 loge (2x)

• translation by 3
2 in the negative x-direction, giving y = 5 loge

(
2(x+ 3

2 )
)= 5 loge (2x+3)

• translation by 1 in the negative y-direction, which gives y = 5 loge (2x +3)−1.

These transformations produce a vertical asymptote at x = −3
2 . There are no critical

points.

y

x
03

2
–

y = 5 loge(2x + 3) – 1 

5 loge 3 – 1 
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Exercise 19

Consider the graph y = log3 x. Explain why the following two transformations of the

graph have the same effect:

• dilation in the x-direction from the y-axis with factor 9

• translation by 2 units down (that is, in the negative y-direction).

Relate your answer to exercise 16.

A rigorous approach to logarithms and exponentials

What does an exponential mean anyway?

Throughout this module, we’ve assumed that functions like f (x) = 2x are defined for all

real numbers x. But are they really?

There’s no problem defining 2x when x is a positive integer; this just means repeated

multiplication and is certainly well defined.

There’s also no problem when x is a negative integer, using the index law

2−n = 1

2n .

For example, 2−3 = 1
8 .

Nor is there a problem when x is a rational number. Using the index laws again,

2
a
b = (2a)

1
b = b

p
2a .

For example, 2
3
2 =

p
23 =p

8 = 2
p

2.

However, it’s not so clear what to do when x is irrational. What does 2
p

2 mean? So far in

the module, this issue has been quietly suppressed.

One approach we might use is continuity. We could take a sequence of rational numbers

r1,r2,r3, . . . which approach
p

2, and consider 2r1 ,2r2 ,2r3 , . . . . If these numbers approach

a limit, then we can call that limit 2
p

2.

In any case, it’s not a trivial matter to define exponential functions like 2x for irrational x.

One way to avoid all of the difficulties is to develop the entire story a different way, start-

ing with the logarithmic function. As discussed in the Motivation section, this approach

may appear less natural but is more rigorous and abstract.
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The natural logarithm, rigorously

We begin by defining the natural logarithm as an integral.

Definition

For any real number x > 0,

ln x =
∫ x

1

1

t
d t .

This equation was exercise 11. It is now a definition.

y

x0 1

ln x 

t

1
ty =

Definition of the natural logarithm as an integral.

As an aside, note the standard fact that the integral of t n is

1

n +1
t n+1.

This is true for any n 6= −1. The integral above is of t n when n =−1, precisely the value of

n for which this standard formula does not apply.

From this definition, we can see immediately that ln1 = 0. We can also see, using the

fundamental theorem of calculus, that the derivative of ln x is
1

x
. (We refer to the module

Integration for the details). So the function ln x is increasing, for all x > 0, as its gradient
1

x
is positive. (This can also be seen from the diagram above, where ln x is shown as a

signed area.) It now follows that ln x < 0, for x ∈ (0,1), and ln x > 0, for x ∈ (1,∞). It is

clear that ln x is a continuous function, and it’s not too difficult to show that ln x →+∞
as x →∞, and that ln x →−∞ as x → 0.



{26} • Exponential and logarithmic functions

Our newly defined function ln x and our previously defined function loge x both have the

same derivative
1

x
. Since ln1 = 0 = loge 1, it follows that ln x and loge x are in fact the

same function — that is, if you manage to overcome all the difficulties with our previous

definition of loge x and arrive at a well-defined function.

From the definition, it’s not clear that the new function ln x behaves like a logarithm at

all. However, we will now show directly that this new function obeys the logarithm laws.

We use a similar method to exercise 10.

Take a positive number y , considered as a constant, and differentiate the two functions

f (x) = ln(x y) and g (x) = ln x + ln y . We obtain

f ′(x) = y

x y
= 1

x
and g ′(x) = 1

x
,

so f ′(x) = g ′(x), and therefore f (x), g (x) differ by a constant. As f (1) = ln y = g (1), it

follows that f (x) = g (x). This shows that

ln(x y) = ln x + ln y,

and so proves one of the logarithm laws.

Using a similar method, we can show that

ln
( x

y

)
= ln x − ln y

and

ln
( 1

x

)
=− ln x.

Next, consider the two functions f (x) = ln(xn) and g (x) = n ln x, where n is any rational

number.3 Differentiating these functions gives

f ′(x) = 1

xn ·nxn−1 = n

x
and g ′(x) = n

x
.

As f and g have the same derivative, they must differ by a constant. We further have

f (1) = 0 = g (1), so f (x) = g (x) and we have proved the logarithm law

ln(xn) = n ln x.

As our new function ln x obeys the familiar logarithm laws, we are justified in calling it a

logarithm!

3 Recall we said before that we only really know how to take rational powers.
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Exponentials, rigorously

Having established our new version of the natural logarithm function, we now turn to

exponentials.

The function ln x mapping (0,∞) to R is a continuous function, strictly increasing from

−∞ to +∞, and hence has an inverse function. This inverse function has domain R and

range (0,∞). We will, for the moment, call this inverse function exp x. So, by definition,

exp x = ln−1(x).

We then have

exp(ln x) = x for all positive x,

ln(exp x) = x for all real x.

We define the number e to be exp1. So exp1 = e and lne = 1. It will turn out that

exp x = ex ; however this is not at all clear from the definition.

We can compute the derivative of exp x, since it is the inverse of ln x, and we know that

the derivative of ln x is
1

x
. Let y = exp x. Then x = ln y and we have

d x

d y
= 1

y
,

so

d

d x
exp x = d y

d x
= 1

d x
d y

= y = exp x.

We can also show that exp satisfies the index laws. For instance, we have

ln
(
exp x ·exp y

)= ln(exp x)+ ln(exp y)

= x + y

= ln
(
exp(x + y)

)
.

Here we just used a logarithm law and the fact that ln and exp are inverses. Since the

function ln is one-to-one and we have just shown that ln
(
exp x ·exp y

) = ln
(
exp(x + y)

)
,

we conclude the index law

exp x ·exp y = exp(x + y).

Using a similar method, we can show that exp also obeys the index law

exp(x − y) = exp x

exp y
.
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For the remaining index law, take a rational number r ; we will show exp(r x) = (exp x)r .

We observe

ln
(
(exp x)r )= r ln(exp x)

= r x

= ln
(
exp(r x)

)
,

where we just used a logarithm law and the fact that ln and exp are inverses. We have

ln
(
(exp x)r

)= ln
(
exp(r x)

)
, and cancelling ln’s establishes the index law

(exp x)r = exp(r x),

for any rational number r . Since exp1 = e, we then have, for any rational number r ,

expr = exp(r ·1) = (exp1)r = er .

We can now use this to define irrational powers. We declare for any real number x, pos-

sibly irrational, that

ex = exp x.

We can go further and use this idea to define any real power ax of any positive number a.

When r is rational, we have from the index law above,

exp(r ln a) = (
exp(ln a)

)r = ar ,

and so for any real number x we can define ax as follows.

Definition

For any real number x and any a > 0,

ax = exp(x ln a).

It’s not difficult to show that ax varies continuously with a and x.

Exercise 20

Let α be any real number and let f (x) = xα, for x > 0. Using the above definition for xα,

prove that f ′(x) =αxα−1.

In this way, we have rigorously defined the functions ln x and ex , found their derivatives,

established the index and logarithm laws, and rigorously defined irrational powers.
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Links forward

A series for ex

Consider the series

f (x) = 1+ x1

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+·· · .

An infinite sum like this, with increasing powers of x, is like an infinite version of a

polynomial and known as a power series. The denominators are all factorials, such as

4! = 4 ·3 ·2 ·1 = 24. We can write the series succinctly in summation notation, as

f (x) =
∞∑

n=0

xn

n!
.

(In the n = 0 term, we set x0 = 1 and follow the convention that 0! = 1.) Substituting x = 0

gives f (0) = 1. It turns out that, for any x, this series converges, and the function f is

continuous and differentiable. And we can see that, if we differentiate the series term-

by-term, we obtain . . . the same series!

f ′(x) = 1+ 2x

2!
+ 3x2

3!
+ 4x3

4!
+·· ·

= 1+ x

1!
+ x2

2!
+ x3

3!
+·· · = f (x).

Hence the series f (x) converges to ex . In particular, substituting x = 1, we obtain an

amazing formula for e:

e = 1+ 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+·· · =

∞∑
n=0

1

n!
.

Derangements and e

Suppose that a group of friends play a gift-giving game for the festive season. Let the

number of friends be n. Each person writes their name down, and the names go into a

hat. Each person in turn then takes a name out of the hat, until everyone has taken a

name out and the hat is empty. You give a gift to the person whose name you pull out of

the hat.

Of course, it won’t do to give a gift to yourself, so we hope nobody pulls out their own

name! What are the chances of this happening?
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Obviously, the answer might depend on n. As it turns out, as n becomes large, the answer

approaches
1

e
.

This question can be expressed as a problem about permutations. Number the people

in the group from 1 to n. The function assigning each person to the person whose name

they pull out of the hat is a one-to-one function

f : {1,2, . . . ,n} → {1,2, . . . ,n},

also known as a permutation. If person i pulls their own name out of the hat, then

f (i ) = i , and i is said to be a fixed point of the permutation.

A good permutation for the purposes of gift-giving is one with no fixed points. A permu-

tation with no fixed points is called a derangement. Our question is really asking what

fraction of permutations are derangements.

The number of permutations of the n friends is not difficult to calculate. The first person

can pick n possible names out of the hat, the second person n−1 names, and so on. The

number of permutations is n!.

We can count the number of derangements Dn as follows, using a technique known as

the principle of inclusion–exclusion.

Starting from all n! permutations, we exclude those which have a fixed point. There are n

possible people who could be a fixed point, and once there is a fixed point, the remaining

n −1 people can be permuted in (n −1)! ways. So we subtract n · (n −1)!.

But, in excluding those permutations, we have excluded some permutations more than

once. Permutations with two fixed points will have been subtracted twice. So, for each

pair of people, we add back on the number of permutations which have them both as

fixed points. There are

(
n

2

)
pairs of people, and the remaining n −2 people can be per-

muted in (n −2)! ways. So we add back on

(
n

2

)
(n −2)!.

However, now permutations with three fixed points will have been added back on too

many times, and have been counted when they shouldn’t be. So, for every group of three

people, we subtract the number of permutations which have them all as fixed points.

There are

(
n

3

)
triples of people, and the remaining n−3 people can be permuted in (n−3)!

ways, so we subtract off

(
n

3

)
(n −3)!.

Continuing in this way, we find that the number of derangements of the n people is

Dn = n!−
(

n

1

)
(n −1)!+

(
n

2

)
(n −2)!−

(
n

3

)
(n −3)!+

(
n

4

)
(n −4)!−·· ·+ (−1)n

(
n

n

)
0!.

(The sign of the last term depends on n, and following the usual convention we set 0! = 1.)
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Using the formula

(
n

k

)
= n!

k !(n −k)!
, we can simplify this expression to

Dn = n!− n!

1!
+ n!

2!
− n!

3!
+ n!

4!
−·· ·+ (−1)n n!

n!
.

Therefore, the fraction of permutations which are derangements is

Dn

n!
= 1− 1

1!
+ 1

2!
− 1

3!
+ 1

4!
−·· ·+ (−1)n 1

n!
.

If we remember the formula for ex ,

ex = 1+ x

1!
+ x2

2!
+ x3

3!
+·· ·+ xn

n!
+·· · ,

then we see that, as n →∞,

Dn

n!
→ e−1 = 1

e
.

So, with a large enough group of friends, the probability of good gift-giving is
1

e
.

Striking it lucky with e

You’re digging for gold on the goldfields. It’s a plentiful gold field, and every time you dig,

you obtain an amount of gold between 0 and 1 gram. The amount of gold you find each

time is random and uniformly distributed. How many times do you expect to have to dig

before you obtain a total of 1 gram of gold?

You might think that the answer is twice! Actually, the expected number of digs is e.

To put the question in pure mathematical terms, the amount of gold (in grams) you ob-

tain each time you dig is a random variable uniformly distributed in [0,1]. Let X1 be the

amount you obtain the first time you dig, let X2 be the amount the second time you dig

and, in general, let Xn be the amount of gold found the nth time you dig. So each Xn is a

random variable uniformly distributed in [0,1].

The number of times you have to dig to obtain 1 gram is then the least n such that

X1 +X2 +·· ·+Xn ≥ 1. Let this number be M . It is also a random variable:

M = min
{

n : X1 +X2 +·· ·+Xn ≥ 1
}
.

The number of times you expect to have to dig to obtain 1 gram of gold is the expected

value E(M) of M .
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The probability that you obtain a full gram in your first dig is zero — you have to get a

whole gram, and the chances of that are vanishingly small: Pr(M = 1) = 0.

The probability you obtain a gram in two digs is 1
2 : you could get anywhere from 0 to 2

grams, and 1 is right in the middle.

In general, the probability that you obtain a gram on the nth dig, but not earlier, can be

expressed as follows. It’s the probability that you have less than a gram after n −1 digs,

but are not still below a gram after n digs:

Pr(M = n) = Pr(X1 +·· ·+Xn−1 < 1 and X1 +·· ·+Xn ≥ 1)

= Pr(X1 +·· ·+Xn−1 < 1)−Pr(X1 +·· ·+Xn < 1).

As it turns out,4 the probability that you have less than a gram after n digs is

Pr(X1 +·· ·+Xn < 1) = 1

n!
.

Proving this requires some work with integration and probability distribution functions.

From this, we obtain

Pr(M = n) = 1

(n −1)!
− 1

n!
.

Thus Pr(M = 1) = 0 and, for n > 1, we can simplify to

Pr(M = n) = 1

(n −1)!

(
1− 1

n

)
= 1

(n −1)!
· n −1

n

= 1

n
· 1

(n −2)!
.

Knowing this probability, we see that the expected number of digs required is

E(M) = 1Pr(M = 1)+2Pr(M = 2)+3Pr(M = 3)+4Pr(M = 4)+·· ·

= 1 ·0+2 · 1

2
· 1

0!
+3 · 1

3
· 1

1!
+4 · 1

4
· 1

2!
+·· ·

= 1+ 1

1!
+ 1

2!
+ 1

3!
+·· · = e.

We have yet to hear of any goldfields with such a distribution of gold.

4 Details may be found in K. G. Russell, ‘Estimating the value of e by simulation’, The American Statistician,

Vol. 45, No. 1 (February 1991), pp. 66–68.
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Sandwiching e

By considering the integral∫ n+1

n

1

x
d x,

where n is positive, we will obtain another amazing formula for e.

y

n + 10 n
x

1
xy =

On the one hand, we can compute the integral exactly:∫ n+1

n

1

x
d x = [

ln x
]n+1

n

= ln(n +1)− lnn

= ln
n +1

n

= ln
(
1+ 1

n

)
.

On the other hand, on the interval [n,n +1], we see that the function
1

x
satisfies

1

n +1
≤ 1

x
≤ 1

n
.

Using these inequalities to estimate the integral (see the module Integration for details),

we have

1

n +1
≤

∫ n+1

n

1

x
d x = ln

(
1+ 1

n

)
≤ 1

n
.
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Multiplying through by n and using a logarithm law gives

n

n +1
≤ n ln

(
1+ 1

n

)
= ln

(
1+ 1

n

)n ≤ 1.

The expression ln(1+ 1
n )n is sandwiched between n

n+1 and 1. In fact, as n →∞, n
n+1 → 1

as well, and so we can deduce

lim
n→∞ ln

(
1+ 1

n

)n = 1.

It follows that the limit of (1+ 1
n )n , as n →∞, is a number whose natural logarithm is 1,

that is, e. We have our new formula for e:

lim
n→∞

(
1+ 1

n

)n = e.

Exercise 21

Using a similar technique, prove that for any real x,

lim
n→∞

(
1+ x

n

)n = ex .

History and applications

Bernoulli, compound interest and Euler

Although some related ideas appeared in earlier works, arguably the first ‘discovery’ of

the number e was made by Jacob Bernoulli in 1683, in considering compound interest.

Suppose that a bank offers to take your money, and will give you 100% interest on it in

a year’s time. So if you give the bank $1000 now, you will get $2000 back in a year. (This

bank pays well!)

Alternatively, the bank says, it will give you half that interest rate, but it will give you the

interest twice as often: so it will give you 50% interest in half a year’s time, and then a

further 50% on that at the end of the year. Your $1000 will become $1500 after half a year,

and then $2250 at the end of the year. By calculating half the interest twice as often, you

end up with significantly more at the end.
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Now the bank says, it can give you a third of the interest rate, but three times as often. So,

33 1
3 % interest is paid out three times throughout the year. Your $1000 becomes $1333.33,

then $1777.78, then $2370.37 (to the nearest cent) at the end of the year. You end up with

more again.

Continuing on in this fashion, the bank might calculate one fourth, one fifth, etc. the

interest, four, five, etc. times as often. In general, it might offer you an interest rate of
100

n %, calculated n times a year. You money is multiplied by

1+ 1

n
,

n times throughout the year. That is, your money is multiplied, overall, by(
1+ 1

n

)n
.

We saw in the section Sandwiching e that, as n approaches infinity (one billionth the

interest rate, one billion times a year!), this amount approaches none other than e:

lim
n→∞

(
1+ 1

n

)n = e.

Thus, in the limit of continuously compounded interest, your $1000 after a year becomes

$1000×e, approximately $2718.28.

In general, consider an interest rate of x (so x = 1 for our interest rate of 100% above).

Again consider an interest rate of x
2 , calculated twice as often; or an interest rate of x

3 ,

calculated three times as often; and, in general, an interest rate of x
n , calculated n times

as often. We obtain, in the limit, that our money is multiplied by

lim
n→∞

(
1+ x

n

)n

each year. As exercise 21 shows, this limit turns out to be ex .

Although some of the above ideas were discussed by Bernoulli, the notation e was not

used until much later. Its first known appearance is in a letter of Euler from 1731.

Today the notation e is often associated with Euler’s name, and e is sometimes called

Euler’s number. (This can be a problem, since there is another mathematical constant

γ≈ 0.5772 which often goes by the name of Euler’s constant.) However, when e was first

used it was not meant to refer to Euler — there is no reason to believe Euler used the

letter in honour of his own name.
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Appendix

Is e rational?

It turns out that e is irrational. We can give a proof of this fact.

Suppose to the contrary that e can be written as a fraction, so

e = a

b
,

where a and b are positive integers. Using the series for e, we then have

e = a

b
= 1+ 1

1!
+ 1

2!
+ 1

3!
+·· · .

The key idea of the proof is to consider this series up to the term
1

b!
. So we think of the

above sum as

a

b
=

(
1+ 1

1!
+ 1

2!
+·· ·+ 1

b!

)
+

( 1

(b +1)!
+ 1

(b +2)!
+·· ·

)
.

Now multiply through by b!. This gives

b!
a

b
=

(
b!+ b!

1!
+ b!

2!
+·· ·+ b!

b!

)
+

( b!

(b +1)!
+ b!

(b +2)!
+·· ·

)
,

and so

(b −1)! a =
(
b!+ b!

1!
+·· ·+ b!

b!

)
+

( 1

b +1
+ 1

(b +1)(b +2)
+ 1

(b +1)(b +2)(b +3)
+·· ·

)
.

All the terms are positive. The left-hand side is an integer, and all the terms in the first

bracket on the right-hand side are also integers, as the denominators cancel against b!.

Therefore, the sum x of the terms in the second bracket must be a positive integer.

However, all the terms in the second bracket are rather small. The denominators (b +1),

(b + 1)(b + 2), (b + 1)(b + 2)(b + 3) increase very quickly. So x is a small positive integer

. . . suspiciously small. Noting that (b +1)(b +2) · · · (b +k) > (b +1)k , for all k ≥ 2, we can

estimate x as

x = 1

b +1
+ 1

(b +1)(b +2)
+ 1

(b +1)(b +2)(b +3)
+·· ·

< 1

b +1
+ 1

(b +1)2 + 1

(b +1)3 +·· · .

This is a geometric series, and its sum is

1
b+1

1− 1
b+1

= 1

b +1
· b +1

b
= 1

b
.
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So x is a positive integer with x < 1

b
≤ 1. There are not many positive integers less than

one! This is a contradiction, and so our initial assumption must have been wrong. We

conclude that e is irrational.

In fact, it can be shown that, like π, the number e is transcendental: it is not the root of

any polynomial with rational coefficients.

Answers to exercises

Exercise 1

If 1 ≤ a < b and h > 0, then ah < bh . Subtracting 1 from both sides and dividing by h

(which is positive) gives the first inequality. This inequality holds for all h > 0, hence

taking a limit as h → 0, we have the desired inequality. (Note that, in the limit, the strict

inequality becomes non-strict.)

Exercise 2

a Using the product rule, f ′(x) = 2xex +x2ex = (2x +x2)ex .

b Using the chain rule, f ′(x) = eex ·ex = ex+ex
.

Exercise 3

Differentiating both sides gives

1 = e loge x · d

d x
loge x

= x · d

d x
loge x.

It follows that
d

d x
loge x = 1

x
.

Exercise 4

Using the chain rule,

f ′(x) = 1

−x
· (−1) = 1

x
.

As f has domain (−∞,0) and f ′ is defined on this entire interval, the function f ′ also has

domain (−∞,0).

Exercise 5

The function f (x) is defined when 3−7x > 0, i.e., x < 3
7 . So the domain is (−∞, 3

7 ).
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Exercise 6

a Writing f (x) = e loge 2·x2
and using the chain rule gives

f ′(x) = loge 2 ·2x ·e loge 2·x2

= loge 2 · x ·2x2+1.

b Writing f (x) = e loge 3·(4x2+2x−7) and using the chain rule gives

f ′(x) = loge 3 · (8x +2) ·e loge 3·(4x2+2x−7)

= loge 3 · (8x +2) ·34x2+2x−7.

Exercise 7

From first principles, if f (x) = 2x , then

f ′(0) = lim
h→0

2h −1

h
.

We have now shown that f ′(x) = loge 2 ·2x , so f ′(0) = loge 2. The desired equality follows.

Exercise 8

From first principles, if f (x) = ax , then

f ′(0) = lim
h→0

ah −1

h
.

Knowing now that f ′(x) = loge a ·ax , and so f ′(0) = loge a, gives the desired equality.

Exercise 9

Writing

f (x) = xx = (
e loge x)x = ex loge x

and using the chain and product rules, we obtain

f ′(x) = ex loge x · d

d x
(x loge x)

= xx
(
x · 1

x
+1 · loge x

)
= xx (1+ loge x).

The function f (x) is only defined for x > 0, so xx 6= 0. Thus the stationary points occur

precisely when loge x =−1, that is, x = e−1 = 1
e .
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Exercise 10

a First, using the change of base rule, we have

f (x) = loge (x y)

loge a
and g (x) = loge x

loge a
+ loge y

loge a
.

So, using the chain rule (and thinking of y as a constant), we compute

f ′(x) = 1

loge a
· 1

x y
· y = 1

x loge a

and

g ′(x) = 1

loge a
· 1

x
= 1

x loge a
.

Hence f ′(x) = g ′(x).

b Since loga 1 = 0, we compute f (1) = loga y and g (1) = loga y .

c As the functions f and g have identical derivatives, they are equal up to a constant.

Since f (1) = g (1), it follows that f (x) and g (x) must be equal for all x.

Exercise 11∫ x

1

1

t
d t = [

loge t
]x

1

= loge x − loge 1 = loge x

Exercise 12

∫ xn+1

xn

1

t
d t = [

loge t
]xn+1

xn

= loge

(
xn+1)− loge

(
xn)= loge

( xn+1

xn

)
= loge x

Exercise 13

Using the product rule, we compute

f ′(x) = 1 · loge x +x · 1

x
−1 = loge x.

Thus f (x) is an antiderivative of loge x, and we have∫
loge x d x = x loge x −x + c,

where c is a constant of integration.
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Exercise 14

Substituting x = 0 gives a y-intercept of 5 − 4 · 3 = −7. Substituting y = 0, we obtain

0 = 5−4 ·32x+1, and so 32x+1 = 5
4 . Hence the x-intercept is 1

2 (log3
5
4 −1) ≈−0.4.

The equation y = 5− 4 · 32x+1 can be written as y = −4g
(
2(x + 1

2 )
)+ 5, where g (x) = 3x .

Hence the graph here is obtained from the graph of y = 3x by applying the following

transformations:

• dilation by a factor of 1
2 in the x-direction from the y-axis, giving y = e2x

• dilation by a factor of 4 in the y-direction from the x-axis, giving y = 4e2x

• reflection in the x-axis, giving y =−4e2x

• translation by 1
2 in the negative x-direction, giving y =−4e2(x+ 1

2 )

• translation by 5 in the positive y-direction, giving y =−4e2(x+ 1
2 ) +5 = 5−4e2x+1.

Under these transformations, the asymptote moves to y = 5.

y

0 x

–7

5

(log3     – 1) 1
2

5
4

y = 5 – 4 . 32x + 1

Exercise 15

a Reflecting the graph of y = 2x in the y-axis gives the graph of y = 2−x . By the index

laws, we see that 2−x = (1
2

)x .

b The equation y = 3− (1
2

)x+1 can be written as y = 3− g
(−(x +1)

)
, where g (x) = 2x .

Hence the graph is obtained from that of y = 2x by the following transformations:

• reflection in the y-axis, giving y = (1
2

)x

• reflection in the x-axis, giving y =−(1
2

)x

• translation by 1 in the negative x-direction, giving y =−(1
2

)x+1

• translation by 3 in the positive y-direction, giving y = 3− (1
2

)x+1.
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Under these transformations, the asymptote moves to y = 3.

y

0

3

x

5
2

y = 3 – (   )x + 11
2

–log2 3 – 1

Exercise 16

Dilating the graph y = 3x in the y-direction from the x-axis with factor 9 gives the graph

y = 9 ·3x . Translating the graph y = 3x by 2 units to the left gives the graph y = 3x+2. As

3x+2 = 32 ·3x = 9 ·3x , these two graphs are identical.

Exercise 17

To solve the equation loga x = N is as simple as rewriting it as x = aN . So, yes, loga x does

take the value N , for the (very large) value of x = aN .

Exercise 18

Subtracting the first equation from the second gives loge (x + 106)− loge x = 1. Using a

logarithm law, this simplifies to

loge

( x +106

x

)
= 1 =⇒ 1+ 106

x
= e.

Therefore x = 106

e −1
and y = loge x = loge

( 106

e −1

)
.

Exercise 19

Dilating the graph y = log3 x in the x-direction from the y-axis with factor 9 gives the

graph y = log3

( x
9

)
. Translating the graph y = log3 x down by 2 units gives the graph

y = log3 x −2. By the logarithm laws, we have

log3

( x

9

)
= log3 x − log3 9 = log3 x −2,

so these two graphs are identical.
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The equation y = log3 x is equivalent to x = 3y ; the function f (x) = log3 x is the inverse of

the function f −1(x) = 3x considered in exercise 16. One graph is obtained from the other

by reflection in the line y = x. The two transformations considered here are the mirror

images (under reflection in y = x) of the two transformations considered in exercise 16.

Exercise 20

By our definition, f (x) = xα = exp(α ln x), and so from the chain rule we obtain

f ′(x) = α

x
exp(α ln x) = α

x
· xα =αxα−1.

Note. In the final step of the calculation above, we used an index law. We first need to

check that the index laws hold for our new definition of powers. (This is easy to do, since

we have already established the index laws for exp and the logarithm laws for ln.)

Exercise 21

We will give a proof assuming x > 0; the negative case is similar. Consider the integral∫ n+x

n

1

t
d t .

We can compute this exactly as∫ n+x

n

1

t
d t = [

ln t
]n+x

n

= ln(n +x)− lnn

= ln
n +x

n

= ln
(
1+ x

n

)
.

On the other hand, we can bound
1

t
on the interval [n,n +x] by

1

n +x
≤ 1

t
≤ 1

n
.

Estimating the integral then gives

x

n +x
≤ ln

(
1+ x

n

)
≤ x

n
.

Multiplying through by n yields

xn

n +x
≤ ln

(
1+ x

n

)n ≤ x.

As n →∞,
xn

n +x
→ x, so we obtain ln

(
1+ x

n

)n → x, hence
(
1+ x

n

)n → ex .
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