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Binomial
distribution

Assumed knowledge

The content of the modules:

• Probability

• Discrete probability distributions.

Motivation

This module focusses on the binomial distribution. The module Discrete probability

distributions includes many examples of discrete random variables. But the binomial

distribution is such an important example of a discrete distribution that it gets a module

in its own right.

The importance of the binomial distribution is that it has very wide application. This

is because at its heart is a binary situation: one with two possible outcomes. Many ran-

dom phenomena worth studying have two outcomes. Most notably, this occurs when we

examine a sample from a large population of ‘units’ for the presence of a characteristic;

each unit either has the characteristic or it doesn’t. The generic term ‘unit’ is used pre-

cisely because the situation is so general. The population is often people, in which case

a unit is a person; but a unit might be a school, an insect, a bank loan, a company, a DNA

sequence, or any of a number of other possibilities.

This module starts by introducing a Bernoulli random variable as a model for a binary

situation. Then we introduce a binomial random variable as the number of ‘successes’

in n independent Bernoulli trials, each with the same probability of success p. We show

how to calculate probabilities associated with a binomial distribution, and illustrate the

use of binomial distributions to solve practical problems. The last section covers the

mean and variance of a binomial distribution.
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Content

Bernoulli trials

The module Discrete probability distributions discusses the idea of a sequence of inde-

pendent trials, where each trial has the same probability of success p. This structure

leads to a number of random variables with different distributions. In that module, the

trials structure is used to introduce the geometric distribution. Because of the general

importance of the trials structure, we examine it systematically in this module.

The central idea is a Bernoulli trial — named after Jacob Bernoulli (1655–1705), who was

one of a family of prominent mathematicians. A Bernoulli trial is a random procedure

that can have one of two outcomes, which are arbitrarily labelled ‘success’ and ‘failure’.

Example: Tetris

The following random procedure is considered in the module Probability.

During a game of Tetris, we observe a sequence of three consecutive pieces. Each Tetris

piece has one of seven possible shapes: I,J,L,O,S,T,Z. So in this random procedure, we

can observe a sequence such as JLL, ZOS, ZSZ, III and so on.

For each sequence of three pieces, we may ask: Does it contain at least one Z? The

sequence of three pieces is the test or ‘trial’. A sequence of three pieces containing a Z is

regarded as a success, and one without a Z as a failure.

From the point of view of this question, it does not matter what the other shapes in a

sequence are. All we are concerned about is whether or not the sequence has a Z.

A Bernoulli trial has a corresponding Bernoulli random variable, which counts the num-

ber of successes in a single trial. The only possible values of this random variable are zero

and one; the random variable takes the value one if a success occurs, and the value zero

if a failure occurs.

Let X be a Bernoulli random variable with parameter p, where 0 < p < 1. The probability

function pX (x) of X is given by

pX (x) = Pr(X = x) =
p if x = 1,

1−p if x = 0.



{6} • Binomial distribution

The mean of this random variable is

µX = E(X ) =∑
x pX (x)

= (
0× (1−p)

)+ (
1×p

)
= p.

The variance of X is equal to p(1−p), a result obtained as follows:

var(X ) =∑
(x −µX )2pX (x)

= (0−p)2(1−p)+ (1−p)2p

= p(1−p)
(
p + (1−p)

)
= p(1−p).

Bernoulli random variables arise in a way that occurs very widely indeed. Suppose we

are interested in a population of ‘units’, in which the proportion of units with a partic-

ular characteristic is p. Here a ‘unit’ may be a person, an animal, a plant, a school, a

business, or many other entities, according to the population under study. We take a

random sample of units from the population, and observe whether or not each unit has

this characteristic of interest.

If the population is infinite, or so large that we can regard it as effectively infinite, then

sampling without replacement is the same as sampling with replacement, and if each

unit is sampled independently from all the others, the probability of any single sampled

unit having the characteristic is equal to p.

If we define ‘success’ as ‘having the characteristic of interest’, then each observation can

be regarded as a Bernoulli trial, independent of the other observations, with probability

of success equal to p.

The importance of this insight is that it is so widely applicable. Here are some examples:

• A political poll of voters is carried out. Each polled voter is asked whether or not they

currently approve of the Prime Minister.

• A random sample of schools is obtained. The schools are assessed on their compli-

ance with a suitable policy on sun exposure for their students.

• A random sample of police personnel are interviewed. Each person is assessed as to

whether or not they show appropriate awareness of different cultures.

• A random sample of drivers are drug tested, and it is recorded whether or not they are

positive for recent methamphetamine use.
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• A random sample of footballers is chosen and their record of injuries assessed, ac-

cording to whether or not they have had more than three episodes of concussion.

Consideration of these examples suggests that we are interested in the number of suc-

cesses, in general, and not just the examination of individual responses. If we have n

trials, we want to know how many of them are successes.

Binomial random variables

Define X to be the number of successes in n independent Bernoulli trials, each with

probability of success p. We now derive the probability function of X .

First we note that X can take the values 0,1,2, . . . ,n. Hence, there are n +1 possible dis-

crete values for X . We are interested in the probability that X takes a particular value x.

If there are x successes observed, then there must be n−x failures observed. One way for

this to happen is for the first x Bernoulli trials to be successes, and the remaining n − x

to be failures. The probability of this is given by

p ×p ×·· ·×p︸ ︷︷ ︸
x of these

× (1−p)× (1−p)×·· ·× (1−p)︸ ︷︷ ︸
n−x of these

= px (1−p)n−x .

However, this is only one of the many ways that we can obtain x successes and n − x

failures. They could occur in exactly the opposite order: all n − x failures first, then x

successes. This outcome, which has the same number of successes as the first outcome

but with a different arrangement, also has probability px (1−p)n−x . There are many other

ways to arrange x successes and n − x failures among the n possible positions. Once we

position the x successes, the positions of the n −x failures are inevitable.

The number of ways of arranging x successes in n trials is equal to the number of ways

of choosing x objects from n objects, which is equal to(
n

x

)
= n!

x!(n −x)!
= n × (n −1)× (n −2)×·· ·× (n −x +2)× (n −x +1)

x × (x −1)× (x −2)×·· ·×2×1
.

(This is discussed in the module The binomial theorem.) Recall that 0! is defined to be 1,

and that
(n

n

)= (n
0

)= 1.

We can now determine the total probability of obtaining x successes. Each outcome

with x successes and n−x failures has individual probability px (1−p)n−x , and there are(n
x

)
possible arrangements. Hence, the total probability of x successes in n independent

Bernoulli trials is(
n

x

)
px (1−p)n−x , for x = 0,1,2, . . . ,n.
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This is the binomial distribution, and it is arguably the most important discrete distri-

bution of all, because of the range of its application.

If X is the number of successes in n independent Bernoulli trials, each with probability

of success p, then the probability function pX (x) of X is given by

pX (x) = Pr(X = x) =
(

n

x

)
px (1−p)n−x , for x = 0,1,2, . . . ,n,

and X is a binomial random variable with parameters n and p. We write X
d= Bi(n, p).

Notes.

• The probability of n successes out of n trials equals
(n

n

)
pn(1−p)0 = pn , which is the

answer we expect from first principles. Similarly, the probability of zero successes out

of n trials is the probability of obtaining n failures, which is (1−p)n .

• Consider the two essential properties of any probability function pX (x):

1 pX (x) ≥ 0, for every real number x.

2
∑

pX (x) = 1, where the sum is taken over all values x for which pX (x) > 0.

In the case that X is a binomial random variable, we clearly have pX (x) ≥ 0, since

0 < p < 1. It looks like a more challenging task to verify that
∑

pX (x) = 1. However, we

can use the binomial theorem:

(a +b)n =
n∑

r=0

(
n

r

)
an−r br .

(See the module The binomial theorem.) Note the form of each summand, and the

similarity to the probability function of the binomial distribution. It follows by the

binomial theorem that∑
pX (x) =

n∑
x=0

(
n

x

)
px (1−p)n−x = (

(1−p)+p
)n = 1.

• If we view the formula

pX (x) =
(

n

x

)
px (1−p)n−x

in isolation, we may wonder whether pX (x) ≤ 1. After all, the number
(n

x

)
can be very

large: for example,
(300

150

)≈ 1089. But in these circumstances, the number px (1−p)n−x

is very small: for example, 0.4150 ×0.6150 ≈ 10−93. So it seems that, in the formula for

pX (x), we may be multiplying a very large number by a very small number. Can we

be sure that the product pX (x) does not exceed one? The simplest answer is that we

know that pX (x) ≤ 1 because we derived pX (x) from first principles as a probability.

Alternatively, since
∑

pX (x) = 1 and pX (x) ≥ 0, for all possible values of X , it follows

that pX (x) ≤ 1.
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Example: Multiple-choice test

A teacher sets a short multiple-choice test for her students. The test consists of five ques-

tions, each with four choices. For each question, she uses a random number generator

to assign the letters A, B, C, D to the choices. So for each question, the chance that any

letter corresponds to the correct answer is equal to 1
4 , and the assignments of the letters

are independent for different questions. One of her students, Barry, has not studied at

all for the test. He decides that he might as well guess ‘A’ for each question, since there is

no penalty for incorrect answers.

Let X be the number of questions that Barry gets right. His chance of getting a question

right is just the chance that the letter ‘A’ was assigned to the correct answer, which is 1
4 .

There are five questions. The outcome for each question can be regarded as ‘correct’ or

‘not correct’, and hence as one of two possible outcomes. Each question is independent.

We therefore have the structure of a sequence of independent Bernoulli trials, each with

probability of success (a correct answer) equal to 1
4 . So X has a binomial distribution

with parameters 5 and 1
4 , that is, X

d= Bi(5, 1
4 ).

The probability function of X is shown in figure 1.
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Figure 1: The probability function pX (x) for X
d= Bi(5, 1

4 ).

We can see from the graph that Barry’s chance of getting all five questions correct is

very small; it is just visible on the graph as a very small value. On the other hand, the

chance that he gets none correct (all wrong) is about 0.24, and the chance that he gets

one correct is almost 0.4. What are these probabilities, more precisely?
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The probability function of X is given by

pX (x) =
(

5

x

)(1

4

)x(3

4

)n−x
, for x = 0,1,2,3,4,5.

So pX (5) = (1
4

)5 ≈ 0.0010; Barry’s chance of ‘full marks’ is one in a thousand. On the

other hand, pX (0) = (3
4

)5 ≈ 0.2373 and pX (1) = 5× 1
4 × (3

4

)4 ≈ 0.3955. Completing the

distribution, we find that pX (2) ≈ 0.2637, pX (3) ≈ 0.0879 and pX (4) ≈ 0.0146.

In general, it is easier to calculate binomial probabilities using technology. Microsoft

Excel provides a function for this, called BINOM.DIST. To use this function to calculate

pX (x) for X
d= Bi(n, p), four arguments are required: x, n, p, FALSE. For example, to find

the value of pX (2) for X
d= Bi(5, 1

4 ), enter the formula

=BINOM.DIST(2, 5, 0.25, FALSE)

in a cell; this should produce the result 0.2637 (to four decimal places). The somewhat

off-putting argument FALSE is required to get the actual probability function pX (x). If

TRUE is used instead, then the result is the cumulative probability
∑x

k=0 pX (k), which we

do not consider here.

Exercise 1

Casey buys a Venus chocolate bar every day during a promotion that promises ‘one in six

wrappers is a winner’. Assume that the conditions of the binomial distribution apply: the

outcomes for Casey’s purchases are independent, and the population of Venus chocolate

bars is effectively infinite.

a What is the distribution of the number of winning wrappers in seven days?

b Find the probability that Casey gets no winning wrappers in seven days.

c Casey gets no winning wrappers for the first six days of the week. What is the chance

that he will get a winning wrapper on the seventh day?

d Casey buys a bar every day for six weeks. Find the probability that he gets at least

three winning wrappers.

e How many days of purchases are required so that Casey’s chance of getting at least

one winning wrapper is 0.95 or greater?
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Exercise 2

Which of the following situations are suitable for modelling with the binomial distribu-

tion? For those which are not, explain what the problem is.

a A normal six-sided die is rolled 15 times, and the number of fours obtained is ob-

served.

b For a period of two weeks in a particular city, the number of days on which rain

occurs is recorded.

c There are five prizes in a raffle of 100 tickets. Each ticket is either blue, green, yellow

or pink, and there are 25 tickets of each colour. The number of blue tickets among

the five winning tickets drawn in the raffle is recorded.

d Twenty classes at primary schools are chosen at random, and all the students in these

classes are surveyed. The total number of students who like their teacher is recorded.

e Genetic testing is performed on a random sample of 50 Australian women. The num-

ber of women in the sample with a gene associated with breast cancer is recorded.

Exercise 3

Ecologists are studying the distributions of plant species in a large forest. They do this by

choosing n quadrats at random (a quadrat is a small rectangular area of land), and ex-

amining in detail the species found in each of these quadrats. Suppose that a particular

plant species is present in a proportion k of all possible quadrats, and distributed ran-

domly throughout the forest. How large should the sample size n be, in order to detect

the presence of the species in the forest with probability at least 0.9?
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It is useful to get a general picture of the binomial distribution. Figure 2 shows nine

binomial distributions, each with n = 20; the values of p range from 0.01 to 0.99.
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Figure 2: Nine binomial distributions with parameters n = 20 and p as labelled.

A number of features of this figure are worth noting:

• First, we may wonder: Where are all the other probabilities? We know that a binomial

random variable can take any value from 0 to n. Here n = 20, so there are 21 possible

values. But in all of the graphs, there are far fewer than 21 spikes showing. Why? The

reason is simply that many of the probabilities are too small to be visible on the scale

shown. The smallest visible probabilities are about 0.01; many of the probabilities

here are 0.001 or smaller, and therefore invisible. For example (taking an extreme

case that is easy to work out), for the top-left graph where X
d= Bi(20,0.01), we have

Pr(X = 20) = 0.0120 = 10−40.

• When p is close to 0 or 1, the distribution is not symmetric. When p is close to 0.5, it

is closer to being symmetric. When p = 0.5, it is symmetric.

• Consider the pairs of distributions for p = θ and p = 1− θ: p = 0.01 and p = 0.99;

p = 0.05 and p = 0.95; p = 0.2 and p = 0.8; p = 0.35 and p = 0.65. Look carefully at the

two distributions for any one of these pairs. The two distributions are mirror images,

reflected about x = 10. This follows from the nature of the binomial distribution.

According to the definition of the binomial distribution, we count the number of suc-

cesses. Since each of the Bernoulli trials has only two possible outcomes, it must be

equivalent, in some sense, to count the number of failures. If we know the number of
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successes is equal to x, then clearly the number of failures is just n−x. It follows that,

if X
d= Bi(n, p) and Y is the number of failures, then Y = n − X and Y

d= Bi(n,1− p).

Note that X and Y are not independent.

• Finally, the spread of the binomial distribution is smaller when p is close to 0 or 1, and

the spread is greatest when p = 0.5.

Mean and variance

Let X
d= Bi(n, p). We now consider the mean and variance of X .

The mean µX is np, a result we will shortly derive. Note that this value for the mean is

intuitively compelling. If we are told that 8% of the population is left-handed, then on

average how many left-handers will there be in a sample of 100? We expect, on average,

8% of 100, which is 8. In a sample of 200, we expect, on average, 8% of 200, which is 16.

The formula we are applying here is n×p, where n is the sample size and p the proportion

of the population with the binary characteristic (in this example, being left-handed).

We will use the following two general results without proving them: one for the mean

of a sum of random variables, and the other for the variance of a sum of independent

random variables.

1 For n random variables X1, X2, . . . , Xn , we have

E(X1 +X2 +·· ·+Xn) = E(X1)+E(X2)+·· ·+E(Xn).

2 If Y1,Y2, . . . ,Yn are independent random variables, then

var(Y1 +Y2 +·· ·+Yn) = var(Y1)+var(Y2)+·· ·+var(Yn).

Note the important difference in the conditions of these two results. The mean of the

sum equals the sum of the means, without any conditions on the random variables. The

corresponding result for the variance, however, requires that the random variables are

independent.

Recall that a binomial random variable is defined to be the number of successes in a

sequence of n independent Bernoulli trials, each with probability of success p. Let Bi

be the number of successes on the i th trial. Then Bi is a Bernoulli random variable

with parameter p. Counting the total number of successes over n trials is equivalent

to summing the Bi ’s. In the section Bernoulli trials, we showed that E(Bi ) = p. Since

X = B1 +B2 +·· ·+Bn , it follows that

E(X ) = E(B1)+E(B2)+·· ·+E(Bn)

= p +p +·· ·+p

= np.
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We may also establish this result in a far less elegant way, using the probability function

of X . This requires a result involving combinations: for a ≥ b ≥ 1, we have(
a

b

)
= a!

(a −b)!b!

= a(a −1) · · · (a −b +1)

b!

= a

b

(a −1)(a −2) · · · (a −b +1)

(b −1)!

= a

b

(
a −1

b −1

)
.

We can use this result to calculate E(X ) directly:

E(X ) =
n∑

x=0
x pX (x) (definition of expected value)

=
n∑

x=0
x

(
n

x

)
px (1−p)n−x

= np
n∑

x=1

(
n −1

x −1

)
px−1(1−p)(n−1)−(x−1) (using the result above)

= np
m∑

y=0

(
m

y

)
p y (1−p)m−y (where m = n −1 and y = x −1)

= np ×1 (by the binomial theorem)

= np.

Now we consider the variance of X . It is possible, but cumbersome, to derive the variance

directly, using the definition var(X ) = E[(X −µX )2] and a further result involving combi-

nations. Instead, we will apply the general result for the variance of a sum of indepen-

dent random variables. As before, we note that X = B1+B2+·· ·+Bn , where B1,B2, . . . ,Bn

are independent Bernoulli random variables with parameter p. In the section Bernoulli

trials, we showed that var(Bi ) = p(1−p). Hence,

var(X ) = var(B1)+var(B2)+·· ·+var(Bn)

= p(1−p)+p(1−p)+·· ·+p(1−p)

= np(1−p).

It follows that, for X
d= Bi(n, p), the standard deviation of X is given by

sd(X ) =√
np(1−p).
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Note that the spread of the distribution of X , reflected in the formulas for var(X ) and

sd(X ), is the same for X
d= Bi(n, p) and X

d= Bi(n,1 − p). This agrees with the pattern

observed in figure 2: the distribution for p = θ is a mirror image of the distribution for

p = 1−θ, and therefore has the same spread.

Exercise 4

Consider the nine binomial distributions represented in figure 2.

a Determine the mean and standard deviation of X in each case.

b Among the nine distributions, when is the standard deviation smallest? When is it

largest?

Exercise 5

Suppose that X
d= Bi(n, p).

a Sketch the graph of the variance of X as a function of p.

b Using calculus, or otherwise, show that the variance is largest when p = 0.5.

c Find the variance and standard deviation of X when p = 0.5.

Exercise 6

Let 0 < p < 1 and suppose that X
d= Bi(n, p). Consider the following claim:

As n tends to infinity, the largest value of pX (x) tends to zero.

Is this true? Explain.

Answers to exercises

Exercise 1

a Let X be the number of winning wrappers in one week (7 days). Then X
d= Bi(7, 1

6 ).

b Pr(X = 0) = (5
6

)7 ≈ 0.279.

c The purchases are assumed to be independent, and hence the outcome of the first six

days is irrelevant. The probability of a winning wrapper on any given day (including

on the seventh day) is 1
6 .
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d Let Y be the number of winning wrappers in six weeks (42 days). Then Y
d= Bi(42, 1

6 ).

Hence,

Pr(Y ≥ 3) = 1−Pr(Y ≤ 2)

= 1− [
Pr(Y = 0)+Pr(Y = 1)+Pr(Y = 2)

]
= 1− [(5

6

)42 +42× 1
6 ×

(5
6

)41 +861× (1
6

)2 × (5
6

)40]
≈ 1− [

0.0005+0.0040+0.0163
]≈ 0.979.

This could also be calculated with the help of the BINOM.DIST function in Excel.

e Let U be the number of winning wrappers in n purchases. Then U
d= Bi(n, 1

6 ) and so

Pr(U ≥ 1) ≥ 0.95 ⇐⇒ 1−Pr(U = 0) ≥ 0.95

⇐⇒ Pr(U = 0) ≤ 0.05

⇐⇒ (5
6

)n ≤ 0.05

⇐⇒ n loge

(5
6

)≤ loge (0.05)

⇐⇒ n ≥ loge (0.05)

loge

(5
6

) ≈ 16.431.

Hence, he needs to purchase a bar every day for 17 days.

Exercise 2

a Binomial.

b Not binomial. The weather from one day to the next is not independent. Even

though, for example, the chance of rain on a day in March may be 0.1 based on long-

term records for the city, the days in a particular fortnight are not independent.

c Not binomial. When sampling without replacement from a small population of tick-

ets, the chance of a ‘success’ (in this case, a blue ticket) changes with each ticket

drawn.

d Not binomial. There is likely to be clustering within classes; the students within a

class are not independent from each other.

e Binomial.

Exercise 3

This problem is like that of Casey and the winning wrappers. Let X be the number of

sampled quadrats containing the species of interest. We assume that X
d= Bi(n,k). We
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want Pr(X ≥ 1) ≥ 0.9, since we only need to observe the species in one quadrat to know

that it is present in the forest. We have

Pr(X ≥ 1) ≥ 0.9 ⇐⇒ Pr(X = 0) ≤ 0.1

⇐⇒ (1−k)n ≤ 0.1

⇐⇒ n ≥ loge (0.1)

loge (1−k)
.

For example: if k = 0.1, we need n ≥ 22; if k = 0.05, we need n ≥ 45; if k = 0.01, we need

n ≥ 230.

Exercise 4

a
p 0.01 0.05 0.2 0.35 0.5 0.65 0.8 0.95 0.99

µX 0.2 1 4 7 10 13 16 19 19.8

sd(X ) 0.445 0.975 1.789 2.133 2.236 2.133 1.789 0.975 0.445

b The standard deviation is smallest when |p−0.5| is largest; in this set of distributions,

when p = 0.01 and p = 0.99. The standard deviation is largest when p = 0.5.

Exercise 5

a The graph of the variance of X as a function of p is as follows.
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Figure 3: Variance of X as a function of p, where X
d= Bi(n, p).
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b The variance function is f (p) = np(1−p). So f ′(p) = n(1−2p). Hence f ′(p) = 0 when

p = 0.5, and this is clearly a maximum.

c When p = 0.5, we have var(X ) = n
4 and sd(X ) =

p
n

2 .

Exercise 6

Yes, it is true that, as n tends to infinity, the largest value of pX (x) tends to zero. We will

not prove this explicitly, but make the following two observations.

• First consider the case where p = 0.5 and n is even; let n = 2m. The largest value of

pX (x) occurs when x = n
2 = m (see figure 2, for example). This probability is given by

pX (m) =
(

2m

m

)
1

4m .

This tends to zero as m tends to infinity. Proving this fact is beyond the scope of the

curriculum (it can be done using Stirling’s formula, for example), but evaluating the

probabilities for large values of m will suggest that it is true:

- for m = 1000, pX (m) ≈ 0.0178

- for m = 10 000, pX (m) ≈ 0.0056

- for m = 100 000, pX (m) ≈ 0.0018

- for m = 1 000 000, pX (m) ≈ 0.0006.

• In general, for X
d= Bi(n, p), we have sd(X ) = √

np(1−p). As n tends to infinity, the

standard deviation grows larger and larger, which means that the distribution is more

and more spread out, leading to the largest probability gradually diminishing in size.
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