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Continuous
probability
distributions

Assumed knowledge

• The content of the modules:

- Probability

- Discrete probability distributions

- Binomial distribution.

• A basic understanding of integration, as discussed in the module Integration.

Motivation

The module Discrete probability distributions introduces the fundamentals of random

variables, noting that they are the numerical outcome of a random procedure.

Most of the examples considered in that module involve counts of some sort: the number

of things, or people, or occurrences, and so on. When we count, the outcome is definitely

discrete: it can only take integer values, and not other numerical values.

However, many measured variables are not like this. Rather, they take a value in a speci-

fied range (for example, a variable might be positive), but within that range they can take

any numerical value. The paradigm phenomenon in this category is ‘time’. If we ask the

question ‘How long does it take?’ (to complete a crossword, to brush your teeth, for a

person to die after a diagnosis of an illness, to run 10 kilometres), then the answer can

be given to varying levels of accuracy, and we are really only limited by the precision of

our instruments. We feel that, in principle, the time could be any numerical value. For

example, the time take to run 10 kilometres could be 50 minutes and 23.1 seconds. But

it could also be 50 minutes and 23.08 seconds, or 50 minutes and 23.082 seconds, and

so on.

Many other variables are measured on a continuum like this. These variables include

height, weight, blood pressure, temperature, distance, speed and many others. We need

a way to represent the probability distribution of such continuous variables, and the pur-

pose of this module is to describe this.
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There are different ways to describe the probability distribution of a continuous ran-

dom variable. In this module, we introduce the cumulative distribution function and the

probability density function. We shall see that probabilities associated with a continuous

random variable are given by integrals. This module also covers the mean and variance

of a continuous random variable.

Content

Continuous random variables: basic ideas

Random variables have been introduced in the module Discrete probability distribu-

tions. Recall that a random variable is a variable whose value is determined by the out-

come of a random procedure.

There are two main types of random variables: discrete and continuous. The modules

Discrete probability distributions and Binomial distribution deal with discrete random

variables; we now turn our attention to the second type, continuous random variables.

A continuous random variable is one that can take any real value within a specified

range.

A discrete random variable takes some values and not others; we cannot obtain a value

of 4.73 when rolling a fair die. By contrast, a continuous random variable can take any

value, in principle, within a specified range.

We have already seen examples of continuous random variables, when the idea of a ran-

dom variable was first introduced.

Example: Five people born in 1995

Five babies born in 1995 are followed up over their lives, and major health and milestone

events are recorded. Here are two continuous random variables that could be defined:

• Let W be the average height of the five people at age 18. Then the value of W must be

positive, but there is no obvious upper bound. The common practice in such cases is

to say that the possible values are W > 0; we will assign extremely low probabilities to

large values.

• Let Ti be the total time spent on Facebook by individual i up to age 18. Then Ti in

this case is limited by the total time span being considered. If we measure Ti in years,

then 0 ≤ Ti ≤ 18; again, values anywhere near the logical maximum of 18 years will be

assigned essentially zero probability.
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Cumulative distribution functions

The cumulative distribution function (cdf) of any random variable X is the function

FX : R→ [0,1] defined by

FX (x) = Pr(X ≤ x).

Both discrete and continuous random variables have cdfs, although we did not focus on

them in the modules on discrete random variables and they are more straightforward to

use for continuous random variables.

As noted in the module Discrete probability distributions, the use of lower case x as the

argument is arbitrary here: if we wrote FX (t ), it would be the same function, determined

by the random variable X . But it helps to associate the corresponding lower-case letter

with the random variable we are considering.

The cdf is defined for all real values x, sometimes implicitly rather than explicitly. In the

example in the previous section, we considered the random variable Ti , the total time

spent on Facebook by individual i up to age 18. This is a measurement of time, in years,

which must be between 0 and 18. So we know that the cdf of Ti must be zero for any

value of t < 0. That is, if t < 0, then FTi (t ) = Pr(Ti ≤ t ) = 0. At the other extreme, we know

that Ti must be less than or equal to 18. So, if t ≥ 18, then FTi (t ) = Pr(Ti ≤ t ) = 1.

Remember that outcomes for random variables define events in the event space, which

is why we are able to assign probabilities to such outcomes. Let X be a random variable

with cdf FX (x). For a < b, we can consider the following events:

• C = “X ≤ a”

• D = “a < X ≤ b”

• E = “X ≤ b”.

Then C and D are mutually exclusive, and their union is the event E . By the third axiom

of probability, this tells us that

Pr(E) = Pr(C )+Pr(D)

=⇒ Pr(X ≤ b) = Pr(X ≤ a)+Pr(a < X ≤ b)

=⇒ Pr(a < X ≤ b) = Pr(X ≤ b)−Pr(X ≤ a)

=⇒ Pr(a < X ≤ b) = FX (b)−FX (a).
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The cumulative distribution function FX (x) of a random variable X has three important

properties:

1 The cumulative distribution function FX (x) is a non-decreasing function. This fol-

lows directly from the result we have just derived: For a < b, we have

Pr(a < X ≤ b) ≥ 0 =⇒ FX (b)−FX (a) ≥ 0 =⇒ FX (a) ≤ FX (b).

2 As x →−∞, the value of FX (x) approaches 0 (or equals 0). That is, lim
x→−∞FX (x) = 0.

This follows in part from the fact that Pr(∅) = 0.

3 As x →∞, the value of FX (x) approaches 1 (or equals 1). That is, lim
x→∞FX (x) = 1. This

follows in part from the fact that Pr(E ) = 1.

All of the above discussion applies equally to discrete and continuous random variables.

We now turn specifically to the cdf of a continuous random variable. Its form is some-

thing like that shown in the following figure. We require a continuous random variable

to have a cdf that is a continuous function.
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Figure 1: The general appearance of the cumulative distribution function of a continuous
random variable.

We now use the cdf a continuous random variable to start to think about the question of

probabilities for continuous random variables. For discrete random variables, probabil-

ities come directly from the probability function pX (x): we identify the possible discrete

values that the random variable X can take, and then specify somehow the probability

for each of these values.
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For a continuous random variable X , once we know its cdf FX (x), we can find the prob-

ability that X lies in any given interval:

Pr(a < X ≤ b) = FX (b)−FX (a).

But what if we are interested in the probability that a continuous random variable takes

a specific single value? What is Pr(X = x) for a continuous random variable?

We can address this question by considering the probability that X lies in an interval,

and then shrinking the interval to a single point. Formally, for a continuous random

variable X with cdf FX (x):

Pr(X = x) ≤ lim
h→0+ Pr(x −h < X ≤ x)

= lim
h→0+

(
FX (x)−FX (x −h)

)
= FX (x)−FX (x) (since FX is continuous)

= 0.

Hence, Pr(X = x) = 0. This is a somewhat disconcerting result: It seems to be saying that

we can never really observe a continuous random variable taking a specific value, since

the probability of observing any value is zero.

In fact, this is true. Continuous random variables are really abstractions: what we ob-

serve is always rounded in some way. It helps to think about some specific cases.

Example: Random numbers

Suppose we consider real numbers randomly chosen between 0 and 1, for which we

record X1, the random number truncated to one decimal place. For example, the num-

ber 0.07491234008 is recorded as 0.0 (as the first decimal place is zero). Note that this

means we are not rounding, but truncating. If the mechanism generating these num-

bers has no preference for any position in the interval (0,1), then the distribution of the

numbers we obtain will be such that

Pr(X1 = 0.0) = Pr(X1 = 0.1) = ·· · = Pr(X1 = 0.9) = 1
10 .

This is a discrete random variable, with the same probability for each of the ten possible

outcomes.

Now suppose that instead we record X2, the random number truncated to two decimal

places (again, not rounding). For example, if the real number is 0.9790295134, we record

0.97. This random variable is also discrete, with

Pr(X2 = 0.00) = Pr(X2 = 0.01) = ·· · = Pr(X2 = 0.99) = 1
100 .
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The distributions of X1 and X2 are shown in figure 2.
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Figure 2: The probability functions pX1 (x) for X1 and pX2 (x) for X2.

You can see where this is going: If we record the first k decimal places, the random vari-

able Xk has 10k possible outcomes, each with the same probability 10−k .

Excel has a function that produces real numbers between 0 and 1, chosen so that there

is no preference for any position in the interval (0,1). If you enter =RAND() in a cell and

hit return, you will obtain such a number. Increase the number of decimal places shown

in the cell. Keep going until you get a lot of zeroes on the end of the number; you might

need to increase the size of the cell. Your spreadsheet should look like figure 3, although

of course the specific number will be different . . . it is random, after all!

Figure 3: An Excel spreadsheet with a random number from between 0 and 1.
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If you hit the key ‘F9’ repeatedly at this point, you will see a sequence of random num-

bers, all between 0 and 1. From examining these, it appears that Excel actually produces

observations on the random variable X15, the first 15 decimal places of the number. So

the chance of any specific one of these numbers occurring is 10−15.

Now consider the chance that each of these discrete random variables X1, X2, X3, . . .

takes a value in the interval [0.3,0.4), for example. We have

Pr(0.3 ≤ X1 < 0.4) = Pr(X1 = 0.3) = 0.1,

Pr(0.3 ≤ X2 < 0.4) = Pr(X2 = 0.30)+Pr(X2 = 0.31)+·· ·+Pr(X2 = 0.39)

= 10×0.01 = 0.1,

Pr(0.3 ≤ X3 < 0.4) = 102 ×10−3 = 0.1,

Pr(0.3 ≤ X4 < 0.4) = 103 ×10−4 = 0.1,

...

Pr(0.3 ≤ Xk < 0.4) = 10k−1 ×10−k = 0.1,

...

As we make the distribution finer and finer, with more and more possible discrete values,

the probability that any of these discrete random variables lies in the interval [0.3,0.4) is

always 0.1.

As k increases, the discrete random variable Xk can be thought of as a closer and closer

approximation to a continuous random variable. This continuous random variable,

which we label U , has the property that

Pr(a ≤U ≤ b) = b −a, for 0 ≤ a ≤ b ≤ 1.

For example, Pr(0.3 ≤U ≤ 0.4) = 0.4−0.3 = 0.1.

The cdf of this random variable, FU (u), is therefore very simple. It is

FU (u) = Pr(U ≤ u) =


0 if u ≤ 0,

u if 0 < u ≤ 1,

1 if u > 1.

A random variable with this cdf is said to have a uniform distribution on the inter-

val (0,1); we denote this by U
d= U(0,1).
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The following figure shows the graph of the cumulative distribution function of U .
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Figure 4: The cumulative distribution function of U
d= U(0,1).

You might have noticed a difference in how the interval between 0.3 and 0.4 was treated

in the continuous case, compared to the discrete cases. In all of the discrete cases, the

upper limits 0.4,0.40,0.400, . . . were excluded, while for the continuous random variable

it is included. Whenever we are dealing with discrete random variables, whether the

inequality is strict or not often matters, and care is needed. For example,

Pr(0.30 ≤ X2 ≤ 0.40) = 11×0.01 = 0.11 6= 0.1.

On the other hand, as we noted earlier in this section, for any continuous random vari-

able X , we have Pr(X = x) = 0. Consequently, for a continuous random variable X and

for a ≤ b, we have Pr(X = a) = Pr(X = b) = 0 and therefore

Pr(a < X < b)

Pr(a < X ≤ b)

Pr(a ≤ X < b)

Pr(a ≤ X ≤ b)


= FX (b)−FX (a).

The cdf is one way to describe the distribution of a continuous random variable. What

about the probability function, as used for discrete random variables? As we have just

seen, for a continuous random variable, we have pX (x) = Pr(X = x) = 0, for all x, so there

is no point in using this. In the next section, we look at the appropriate analogue to the

probability function for continuous random variables.
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Probability density functions

The probability density function (pdf) f (x) of a continuous random variable X is de-

fined as the derivative of the cdf F (x):

f (x) = d

d x
F (x).

It is sometimes useful to consider the cdf F (x) in terms of the pdf f (x):

F (x) =
∫ x

−∞
f (t ) d t . (∗)

The pdf f (x) has two important properties:

1 f (x) ≥ 0, for all x

2
∫ ∞

−∞
f (x) d x = 1.

The first property follows from the fact that the cdf F (x) is non-decreasing and f (x) is

its derivative. The second property follows from equation (∗) above, since F (x) → 1 as

x →∞, and so the total area under the graph of f (x) is equal to 1.

An infinite variety of shapes are possible for a pdf, since the only requirements are the

two properties above. The pdf may have one or several peaks, or no peaks at all; it may

have discontinuities, be made up of combinations of functions, and so on. Figure 5

shows a pdf with a single peak and some mild skewness. As is the case for a typical pdf,

the value of the function approaches zero as x →∞ and x →−∞.

 

Figure 5: A pdf may look something like this.

We now explore how probabilities concerning the continuous random variable X relate

to its pdf. The important result here is that

Pr(a < X ≤ b) =
∫ b

a
f (x) d x = [

F (x)
]b

a .

This result follows from the fact that both sides are equal to F (b)−F (a).
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Notes.

• For a continuous random variable, we must consider the probability that it lies in an

interval. The importance of this result is that it tells us that, to find the probability, we

need to find the area under the pdf on the given interval.

• The total area under the pdf equals 1. So this result tells us that, to approximate the

probability that the random variable lies in a given interval, we just have to guess the

fraction of the area under the pdf between the ends of the interval.

• This result provides another perspective on why pdfs cannot be negative, since if they

were, a negative probability could be obtained, which is impossible.

• The pdf is analogous to, but different from, the probability function (pf) for a discrete

random variable. A pf gives a probability, so it cannot be greater than one. A pdf f (x),

however, may give a value greater than one for some values of x, since it is not the

value of f (x) but the area under the curve that represents probability. On the other

hand, the height of the curve reflects the relative probability. If f (b) = 2 f (a), then an

observation near b is approximately twice as likely as an observation near a.

Exercise 1

Consider the function

f (x) =
6x(1−x) if 0 ≤ x ≤ 1,

0 otherwise.

a Check that f (x) has the two required properties for a pdf, and sketch its graph.

b Suppose that the continuous random variable X has the pdf f (x). Obtain the follow-

ing probabilities without calculation:

i Pr(X ≤−3)

ii Pr(0 ≤ X ≤ 1)

iii Pr(0.5 ≤ X ≤ 1).

c By looking at the graph of the pdf, guess the value of θ = Pr(0.4 ≤ X ≤ 0.7). Then

check the accuracy of your guess by calculating θ.

d i Find f (0.2) and f (0.4), and hence obtain λ= f (0.4)

f (0.2)
.

ii Find the probability that X is within 0.05 of 0.2. That is, find the probability

p0.2 = Pr(0.15 ≤ X ≤ 0.25).

iii Find the probability that X is within 0.05 of 0.4. That is, find the probability

p0.4 = Pr(0.35 ≤ X ≤ 0.45).

iv Confirm that the ratio of these two probabilities is approximately equal to λ.

That is, check that
p0.4

p0.2
≈ f (0.4)

f (0.2)
.
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Example: Random numbers, continued

Consider the continuous random variable U from the first random-number example.

Then U
d= U(0,1). The pdf of U is given by

fU (u) =
1 if 0 < u < 1,

0 otherwise.
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Figure 6: The probability density function of U
d= U(0,1).

Exercise 2

Consider the function fV shown in figure 7; assume that fV (v) = 0 for v < 0 and v > 1.
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Figure 7: The probability density function of a random variable V with the triangular
distribution.
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a Verify that fV is a pdf.

b Give a formula (involving cases) for the function fV (v).

c Suppose a continuous random variable V has this pdf. Find the cdf FV (v) of V .

d Find Pr(0.2 ≤V ≤ 0.3).

e Which is more likely: V ≈ 0.3 or V ≈ 0.8? Explain.

The triangular pdf shown in figure 7 is the pdf of the average of two U(0,1) random vari-

ables. That is, if U1
d= U(0,1) and U2

d= U(0,1) are independent, then V = 1
2 (U1 +U2) has

the pdf in figure 7.

This raises the question: What does the average of three independent U(0,1) random

variables look like? The answer is shown in figure 8. If Ui
d= U(0,1), for i = 1,2,3, and the

three random variables are independent, then W = 1
3 (U1+U2+U3) has the following pdf. 
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Figure 8: The probability density function of W , the average of three independent U(0,1)

random variables.

Mean and variance of a continuous random variable

Mean of a continuous random variable

When introducing the topic of random variables, we noted that the two types — discrete

and continuous — require different approaches.

In the module Discrete probability distributions, the definition of the mean for a discrete

random variable is given as follows: The mean µX of a discrete random variable X with

probability function pX (x) is

µX = E(X ) =∑
x pX (x),

where the sum is taken over all values x for which pX (x) > 0.
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The equivalent quantity for a continuous random variable, not surprisingly, involves an

integral rather than a sum. The mean µX of a continuous random variable X with prob-

ability density function fX (x) is

µX = E(X ) =
∫ ∞

−∞
x fX (x) d x.

By analogy with the discrete case, we may, and often do, restrict the integral to points

where fX (x) > 0.

Several of the points made when the mean was introduced for discrete random variables

apply to the case of continuous random variables, with appropriate modification.

Recall that mean is a measure of ‘central location’ of a random variable. It is the weighted

average of the values that X can take, with weights provided by the probability density

function. The mean is also sometimes called the ‘expected value’ or ‘expectation’ of X

and denoted by E(X ). In visual terms, looking at a pdf, to locate the mean you need

to work out where the pivot should be placed to make the pdf balance on the x-axis,

imagining that the pdf is a thin plate of uniform material, with height fX (x) at x.

An important consequence of this is that the mean of any symmetric random variable

(continuous or discrete) is always on the axis of symmetry of the distribution; for a con-

tinuous random variable, this means the axis of symmetry of the pdf.

Exercise 3

Two triangular pdfs are shown in figure 9.
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Figure 9: The probability density functions of two continuous random variables.
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Each of the pdfs is equal to zero for x < 0 and x > 10, and the x-values of the apex and the

boundaries of the shaded region are labelled on the x-axis in figure 9.

For each of these pdfs separately:

a Write down a formula (involving cases) for the pdf.

b Guess the value of the mean. Then calculate it to assess the accuracy of your guess.

c Guess the probability that the corresponding random variable lies between the limits

of the shaded region. Then calculate the probability to check your guess.

The module Discrete probability distributions gives formulas for the mean and variance

of a linear transformation of a discrete random variable. In this module, we will prove

that the same formulas apply for continuous random variables.

Theorem

Let X be a continuous random variable with mean µX . Then

E(aX +b) = a E(X )+b = aµX +b,

for any real numbers a,b.

Proof
For a continuous random variable X , the mean of a function of X , say g (X ), is

given by

E[g (X )] =
∫ ∞

−∞
g (x) fX (x) d x.

So, for g (X ) = aX +b, we find that

E(aX +b) =
∫ ∞

−∞
(ax +b) fX (x) d x

=
∫ ∞

−∞
ax fX (x) d x +

∫ ∞

−∞
b fX (x) d x

= a
∫ ∞

−∞
x fX (x) d x +b

∫ ∞

−∞
fX (x) d x

= aµX +b.
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Variance of a continuous random variable

Recall that the variance of a random variable X is defined as follows:

var(X ) =σ2
X = E[(X −µ)2], where µ= E(X ).

The variance of a continuous random variable X is the weighted average of the squared

deviations from the mean µ, where the weights are given by the probability density func-

tion fX (x) of X . Hence, for a continuous random variable X with mean µX , the variance

of X is given by

var(X ) =σ2
X = E[(X −µX )2] =

∫ ∞

−∞
(x −µX )2 fX (x) d x.

Recall that the standard deviation σX is the square root of the variance; the standard

deviation (and not the variance) is in the same units as the random variable.

Exercise 4

Find the standard deviation of

a the random variable U
d= U(0,1); see figure 6

b the random variable V from exercise 2.

As observed in the module Discrete probability distributions, there is no simple, direct

interpretation of the variance or the standard deviation. (The variance is equivalent to

the ‘moment of inertia’ in physics.) However, there is a useful guide for the standard

deviation that works most of the time in practice. This guide or ‘rule of thumb’ says

that, for many distributions, the probability that an observation is within two standard

deviations of the mean is approximately 0.95. That is,

Pr(µX −2σX ≤ X ≤µX +2σX ) ≈ 0.95.

This result is correct (to two decimal places) for an important distribution that we meet

in another module, the Normal distribution, but it is found to be a useful indication for

many other distributions too, including ones that are not symmetric.

Due to Chebyshev’s theorem, not covered in detail here, we know that the probability

Pr(µX − 2σX ≤ X ≤ µX + 2σX ) can be as small as 0.75 (but no smaller) and it can be as

large as 1. So clearly, the rule does not apply in some situations. But these extreme dis-

tributions arise rather infrequently across a broad range of practical applications.

Exercise 5

For the random variable V from exercises 2 and 4, find Pr(µV −2σV ≤V ≤µV +2σV ).
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We now consider the variance and the standard deviation of a linear transformation of a

random variable.

Theorem

Let X be a random variable with variance σ2
X . Then

var(aX +b) = a2 var(X ) = a2σ2
X ,

for any real numbers a,b.

Proof
Define Y = aX +b. Then var(Y ) = E[(Y −µY )2]. We know thatµY = aµX +b. Hence,

var(aX +b) = E
[(

aX +b − (aµX +b)
)2]

= E
[
a2(X −µX )2]

= a2 E[(X −µX )2]

= a2 var(X )

= a2σ2
X .

It follows from this result that

sd(aX +b) = |a|sd(X ) = |a|σX .

Exercise 6

Suppose that X , the distance travelled by a taxi in a single trip in a major Australian city,

has a mean of 15 kilometres and a standard deviation of 50 kilometres. Define Y to be the

charge for a single trip (or, to be pedantic, the component of the charge that depends on

flagfall and distance travelled). If the flagfall is $3.20 and the rate per kilometre is $2.20,

what are the mean and the standard deviation of Y ?

Relative frequencies and continuous distributions

Continuous random variables are technically an abstraction (Pr(X = x) = 0), and all vari-

ables that we measure are in practice, as measured, discrete. Even quantities that seem

to be intrinsically continuous, like time, are always measured to the nearest unit of time,

depending on the context. The following table illustrates this.
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Units used for time measurements

Context Smallest unit of time usually used

Cosmology 10 million years (0.01 billion years)

Geological scale MYA (million years ago)

Recorded history year

Recent history day

‘What’s the time?’ minute

Jogger second

Many sports (athletics, swimming, . . . ) hundredth of a second

Formula 1 racing thousandth of a second

This discreteness follows from the rounding that occurs, either by necessity or by con-

vention. There are many such examples in everyday life and also in research. We usually

measure the height of individuals to the nearest centimetre, but it is easy to envisage a

greater accuracy of measurement: to the nearest millimetre, for example.

Given all this intrinsic or necessary discreteness in measured variables, why not stick to

the use of discrete distributions for modelling? Why use continuous distributions at all,

especially if a continuous random variable is really an abstraction rather than a reality?

The answer is that it is often convenient and useful to use a continuous distribution,

rather than attempting to use a discrete model.

Example: Train trips

Consider a study of a particular train trip in a timetable, from an outer suburban train

station to a central city station. The purpose of the study is to check whether the actual

times are adhering to the train timetable. The train’s departure time and arrival time are

recorded for 250 days. The times are measured to one-second accuracy, so that times

such as 42 minutes and 7 seconds (42:07) are recorded.

The average time recorded, to the nearest second, was 2598 seconds (which corresponds

to 43:18 minutes, or to 43.3 minutes as a decimal). The minimum time was 2466 seconds

(41:06 minutes), and the maximum time was 3747 seconds (62:27 minutes).

If we regarded this random variable as being discrete, with possible values at every sec-

ond (. . . ,2800,2801,2802, . . . ), and sought to model it using a discrete distribution, we

would need to come up with probabilities for each second separately. In the absence of

a theoretical basis for doing so, we might consider using the gathered data to estimate

these probabilities.
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Think of the consequences of doing this. There are 1282 discrete times (to the nearest

second) in the range of the data, from 2466 to 3747 seconds. With n = 250 observations,

most of these discrete values will not appear in the data, that is, they will have a fre-

quency of zero. Of the rest, most will have a count of one, some will have two, and a

handful of the discrete values might have occurred three or more times in the data set.

It would therefore be quite cumbersome to model the times as discrete. It is conve-

nient to think of the times as coming from an underlying theoretical distribution which

is continuous. We can then look at the continuous distribution and its properties to un-

derstand more about the pattern of the train-trip times.

A related point is that it is unlikely that we would ever need to consider the lengths of

the train trips at the detailed level of the individual discrete times. It is much more likely

that we would be interested in, say, the percentage of trips between 42 and 43 minutes,

or the fraction of trips that are five minutes late or worse, and so on, rather than the

chance that a train trip is 43 minutes 30 seconds.

Figure 10 shows a histogram of the 250 train trips. Alongside it is the pdf of a continuous

random variable. This pdf is given by the following formula:

f (x) =
exp

(
−1

2

[
ln(x −41)−0.4

]2
)

p
2π(x −41)

, for x > 41.
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Figure 10: Comparison of relative-frequency data and a postulated model.

The relative frequencies in the histogram correspond to the areas under the graph of the

probability density function. We can assess whether the model is a good fit to the data

by looking at the probabilities from the pdf, and asking how close they are to the relative

frequencies in the histogram.
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For example, there were 87 trips between 41:00 minutes and 41:59 minutes; this is a

relative frequency of 87
250 = 0.348. How close is this to the probability implied by the pdf?

Calculating the area under the graph of this pdf is beyond the curriculum, but it is found

to be 0.345, which is very close to the relative frequency. The following table shows the

relative frequencies and the corresponding probabilities from the pdf, for the first five

one-minute intervals.

Comparison of data and model for train-trip times

Time interval (minutes) Frequency Relative frequency Probability from model

41:00 – 41:59 87 0.348 0.345

42:00 – 42:59 68 0.272 0.271

43:00 – 43:59 38 0.152 0.142

44:00 – 44:59 22 0.088 0.081

45:00 – 45:59 9 0.036 0.049

This example illustrates the way that continuous distributions are often used: as a useful

approximation to a discrete random variable, when the discrete random variable is on a

very fine scale. This occurs in a wide variety of contexts, such as measurements of human

heights (centimetres), IQ (integers), exam marks and so on.

In circumstances where we do not have a clear basis for choosing a particular pdf to

model data of this sort, the relative frequencies from the histogram serve as a guide: we

obtain estimates of probabilities for given intervals directly. We then look for a continu-

ous distribution that can closely reflect these estimates.

In the module Exponential and normal distributions, we will see this in practice; the

data being considered are measured on a fine discrete scale, but are modelled using a

continuous distribution.

Example: Taxi fares

Exercise 6 involves taxi fares. Any actual taxi fare is in dollars and cents, and hence the

variable ‘taxi fare’ is discrete: it only takes values to the nearest five cents. To model the

variation in taxi fares, however, we would typically use a continuous distribution.
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Answers to exercises

Exercise 1

a On the interval [0,1], the function f (x) is a quadratic with a negative coefficient of x2

and x-intercepts 0 and 1. Thus f (x) ≥ 0, for x in [0,1]. By definition, we have f (x) = 0,

for x outside the interval [0,1]. Hence, the first property is satisfied: f (x) ≥ 0, for all x.

To check the second property, we calculate:∫ ∞

−∞
f (x) d x =

∫ 1

0
6x(1−x) d x

=
∫ 1

0
6x −6x2 d x

= [
3x2 −2x3]1

0

= 1.

So the second property is also satisfied.

The graph of f (x) is shown in the following figure.
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Figure 11: The probability density function f (x).

b By considering the function or the graph, it is clear that:

i Pr(X ≤−3) = 0

ii Pr(0 ≤ X ≤ 1) = 1

iii Pr(0.5 ≤ X ≤ 1) = 0.5, since the pdf is symmetric about x = 1
2 .
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c To guess this probability, you need to estimate the area under the curve between 0.4

and 0.7. You can do this subjectively, keeping in mind that the total area under the

curve is 1. Using the gridlines in figure 11 as a guide, we can make a slightly more

informed guess:

• The area under the curve between 0.4 and 0.6 is nearly 0.2×1.5 = 0.3.

• The region under the curve between 0.6 and 0.7 is a rectangle of area 0.1×1 = 0.1

plus a small region whose area appears to be a bit less than 3
4 ×0.1×0.5 = 0.0375.

The ‘guesstimate’ for the area is therefore ‘a bit less than 0.3+0.1+0.0375 = 0.4375’.

Calculating the probability gives

Pr(0.4 ≤ X ≤ 0.7) =
∫ 0.7

0.4
6x(1−x) d x

= [
3x2 −2x3]0.7

0.4

= 0.784−0.352

= 0.432.

d i f (0.2) = 0.96, f (0.4) = 1.44, so λ= 1.44

0.96
= 1.5.

ii p0.2 = Pr(0.15 ≤ X ≤ 0.25) =
∫ 0.25

0.15
6x(1−x) d x = 0.0955.

iii p0.4 = Pr(0.35 ≤ X ≤ 0.45) =
∫ 0.45

0.35
6x(1−x) d x = 0.1435.

iv
p0.4

p0.2
= 0.1435

0.0955
= 1.503 ≈λ.

Exercise 2

a By inspection of the graph in figure 7, we can see that fV (v) ≥ 0, for all v , and that the

total area under the curve is 1
2 ×1×2 = 1. Hence, the function has the two properties

of a pdf.

b The function fV (v) is made up of two lines. Formally:

fV (v) =


4v if 0 ≤ v ≤ 1

2 ,

4−4v if 1
2 < v ≤ 1,

0 otherwise.
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c For v > 0, we have FV (v) =
∫ v

0
fV (t ) d t . We need to deal with the two parts of the pdf

separately. For 0 < v ≤ 1
2 , we have

FV (v) =
∫ v

0
4t d t = 2v2.

For 1
2 < v ≤ 1, we have

FV (v) = Pr(V ≤ v) = Pr(V ≤ 1
2 )+Pr( 1

2 <V ≤ v),

and so

FV (v) = 1
2 +

∫ v

0.5
(4−4t ) d t

= 1
2 +

[
4t −2t 2]v

0.5

= 1
2 + (4v −2v2)− 3

2

= 4v −2v2 −1.

Putting these two parts together, we can write, formally, that the cdf of V is given by

FV (v) =



0 if v ≤ 0,

2v2 if 0 < v ≤ 1
2 ,

4v −2v2 −1 if 1
2 < v ≤ 1,

1 if v > 1.

d Pr(0.2 ≤V ≤ 0.3) = FV (0.3)−FV (0.2) = 0.1. This can also be found from the pdf using

the area of a trapezium.

e We have fV (0.3) = 1.2 > 0.8 = fV (0.8), and so V ≈ 0.3 is more likely than V ≈ 0.8.

(Here we write V ≈ v to mean that V lies in a small interval of given width around v .)

Exercise 3

a For the first pdf:

f (x) =


1
5 x if 0 ≤ x ≤ 1,

1
45 (10−x) if 1 < x ≤ 10,

0 otherwise.

For the second pdf:

f (y) =


1

20 y if 0 ≤ y ≤ 4,

1
30 (10− y) if 4 < y ≤ 10,

0 otherwise.
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b You need to guess where the centre of gravity of the pdf is, that is, where you would

need to put the pivot to make the pdf balance. Reasonable guesses would be ‘be-

tween 3 and 4’ for the first pdf, and ‘between 4 and 5’ for the second pdf.

If the continuous random variable X has the first pdf, then

E(X ) =
∫ ∞

−∞
x f (x) d x

=
∫ 1

0

1

5
x2 d x +

∫ 10

1

1

45

(
10x −x2) d x

=
[ 1

15
x3

]1

0
+ 1

45

[
5x2 − 1

3
x3

]10

1

=
( 1

15
−0

)
+ 1

45

((
500− 1000

3

)
−

(
5− 1

3

))

= 1

15
+ 162

45
= 11

3
.

If the continuous random variable Y has the second pdf, then

E(Y ) =
∫ ∞

−∞
y f (y) d y

=
∫ 4

0

1

20
y2 d y +

∫ 10

4

1

30

(
10y − y2) d y

=
[ 1

60
y3

]4

0
+ 1

30

[
5y2 − 1

3
y3

]10

4

=
(64

60
−0

)
+ 1

30

((
500− 1000

3

)
−

(
80− 64

3

))

= 32

30
+ 108

30
= 14

3
.

c The total area under the curve is 1. Reasonable guesses might be ‘about a quarter’

and ‘a bit more than one half’. The values are 2
9 = 0.222 and 5

8 = 0.625, obtained by

either integration or simple calculations of areas.

Exercise 4

a The pdf of U is given by

fU (u) =
1 if 0 ≤ u ≤ 1,

0 otherwise.

We know the mean of the distribution is µU = 1
2 .
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First we find the variance:

var(U ) =
∫ ∞

−∞
(u −µU )2 fU (u) du

=
∫ ∞

−∞

(
u − 1

2

)2
fU (u) du

=
∫ 1

0

(
u − 1

2

)2
du

=
∫ 1

0

(
u2 −u + 1

4

)
du

=
[1

3
u3 − 1

2
u2 + 1

4
u

]1

0

= 1

3
− 1

2
+ 1

4
= 1

12
.

Hence, the standard deviation of U is sd(U ) =
√

1
12 = 0.289.

b The pdf of V is given by

fV (v) =


4v if 0 ≤ v ≤ 1

2 ,

4−4v if 1
2 < v ≤ 1,

0 otherwise.

We know the mean of the distribution is µV = 1
2 .

First we find the variance:

var(V ) =
∫ ∞

−∞
(v −µV )2 fV (v) d v

=
∫ ∞

−∞

(
v − 1

2

)2
fV (v) d v

=
∫ 1

2

0

(
v − 1

2

)2
4v d v +

∫ 1

1
2

(
v − 1

2

)2(
4−4v

)
d v

=
∫ 1

2

0

(
4v3 −4v2 + v

)
d v +

∫ 1

1
2

(
−4v3 +8v2 −5v +1

)
d v

=
[

v4 − 4

3
v3 + 1

2
v2

] 1
2

0
+

[
−v4 + 8

3
v3 − 5

2
v2 + v

]1

1
2

=
( 1

16
− 1

6
+ 1

8

)
−0+

(
−1+ 8

3
− 5

2
+1

)
−

(
− 1

16
+ 1

3
− 5

8
+ 1

2

)
= 1

24
.

Hence, the standard deviation of V is sd(V ) =
√

1
24 = 0.204.
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Exercise 5

From the previous exercise, we have µV = 0.5 and σV = 0.204. Thus

Pr
(
µV −2σV ≤V ≤µV +2σV

)= Pr
(
0.5− (2×0.204) ≤V ≤ 0.5+ (2×0.204)

)
= 2×Pr(0.5−0.408 ≤V ≤ 0.5),

because the pdf is symmetric about 0.5. Now

Pr(0.5−0.408 ≤V ≤ 0.5) = Pr(0.092 ≤V ≤ 0.5)

=
∫ 0.5

0.092
4v d v

= [
2v2]0.5

0.092

= 0.5−0.0169

= 0.483.

Hence, Pr
(
µV −2σV ≤ V ≤ µV +2σV

) = 2×0.483 = 0.966. This is reasonably close to the

probability 0.95 indicated by the rule of thumb.

Exercise 6

We have Y = 2.20X +3.20.

Recall that E(aX +b) = a E(X )+b. As E(X ) = 15, this gives E(Y ) = 2.20×15+3.20 = 36.20.

The average cost is $36.20.

Recall that sd(aX +b) = |a|sd(X ). Since sd(X ) = 50, this gives sd(Y ) = 2.20× 50 = 110.

The standard deviation of the cost is $110.
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