Links forward
Multiple angles
The double angle formulas can be extended to larger multiples. For example, to find \(\cos 3\theta\), we write \(3\theta\) as \(2\theta + \theta\) and expand:
\[ \cos 3\theta = \cos(2\theta + \theta) = \cos2\theta\,\cos\theta - \sin2\theta\,\sin\theta. \]We can now apply the double angle formulas to obtain
\[ \cos 3\theta = \bigl(\cos^2\theta - \sin^2\theta\bigr)\,\cos\theta - 2\sin\theta\,\cos\theta\,\sin\theta = \cos^3\theta - 3\sin^2\theta\,\cos\theta. \]Replacing \(\sin^2\theta\) with \(1-\cos^2\theta\), we have
\[ \cos 3\theta = 4\cos^3\theta - 3\cos\theta. \]Exercise 18
Use the method above to find a formula for \(\sin 3\theta\).
A more general approach is obtained using complex numbers. The complex number \(i\) is defined by \(i^2=-1\).
De Moivre's theorem says that, if \(n\) is a positive integer, then
\[ \bigl(\cos \theta + i\sin \theta\bigr)^n = \cos n\theta + i\sin n\theta. \]Hence, for any given \(n\), we can expand \((\cos \theta + i\sin \theta)^n\) using the binomial theorem and equate the real and imaginary parts to find formulas for \(\cos n\theta\) and \(\sin n\theta\).
For example, in the case of \(n=3\),
\[ \bigl(\cos \theta + i\sin \theta\bigr)^3 = \cos 3\theta +i\sin 3\theta \] and \[ \bigl(\cos \theta + i\sin \theta\bigr)^3 = \cos^3\theta + 3i\cos^2\theta \sin\theta - 3\cos\theta \sin^2\theta - i\sin^3\theta. \]Equating real and imaginary parts, plus some algebraic manipulation, will produce the triple angle formulas.