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Probability

Assumed knowledge

• An informal understanding of probability, as covered by the series of TIMES modules

Chance (Years 1–10).

• Some familiarity with sets, set notation and basic operations on sets, as covered by

the TIMES module Sets and Venn diagrams (Years 7–8).

Motivation

Chance in everyday life

Ideas of chance are pervasive in everyday life, and the use of chance and risk models

makes an important impact on many human activities and concerns.

• When tossing a fair coin, what is the chance that the coin lands heads?

• What is the probability that I win the lottery?

• When playing Tetris, what are the chances of three long sticks (piece I) in a row?

• What chance do I have of getting into my preferred tertiary course?

• What chance do I have of getting into my preferred tertiary course if I get a score of at

least 87 at the end of Year 12?

• What is the probability that the Reserve Bank will cut interest rates by half a percent?

• What are the chances of getting a sexually transmitted disease from unprotected sex?

• If I leave my school bag at the bus stop briefly to run home and get something I’ve

forgotten, what are the chances of it still being there when I get back?

• If I leave my Crumpler bag at the bus stop briefly to run home and get something I’ve

forgotten, what are the chances of it still being there when I get back?

• What is the probability of my bus being more than 15 minutes late today?

• What is the chance that my football team will win the premiership this year?

• What is the chance that Tom/Laura will like me?
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There are important distinctions between some of these questions. As we shall see in this

module, there are several different approaches to probability.

In this module we primarily deal with idealised models of probability based on concepts

of symmetry and random mixing. These are simplified representations of concrete, phys-

ical reality. When we use a coin toss as an example, we are assuming that the coin is

perfectly symmetric and the toss is sufficiently chaotic to guarantee equal probabilities

for both outcomes (head or tail). From time to time in the module, we will hint at how

such idealised models are applied in scientific enquiry. But that is really a topic for later

discussion, in the modules on sampling and inference (Random sampling, Inference for

proportions, Inference for means).

A second way of obtaining probabilities is as an extrapolation from a relative frequency.

This really involves inference, but it is one way that probability and chance ideas are used

in everyday life. For example, when the Bureau of Meteorology predicts that the chance

of rain tomorrow is 20%, there is no clear, simple procedure involving random mixing

as in the coin toss. Rather, there is a long history of conditions like those leading up to

tomorrow. So the reasoning is, approximately: ‘Among all of the previous instances of

weather conditions similar to those we are experiencing now, there was some rain on the

following day in 20% of instances.’ Hence, by a form of inductive reasoning, we say that

the probability of rain tomorrow is 20%.

These first two approaches can converge in some cases. Even if we are unconvinced by

propositions about the randomness of the coin toss and the symmetry of the coin, we

may have observed that the proportion of heads obtained from many similar tosses is

close to 0.5, and therefore assert that the probability of obtaining a head is one half.

A third method of obtaining probabilities is subjective. This use is generally more casual.

I may say that there is a 90% chance that Laura will like me, but you may disagree. Betting

sometimes involves subjective probabilities on the part of the person making the bet. We

do not consider subjective probability further in this module.

Chance in the curriculum

Ideas about chance or probability receive extensive coverage in all of the previous years

of the Australian Curriculum. In this module we develop these ideas more formally; this

is the stage in the curriculum where a structured framework for probability is presented.

Even in the very early years of the curriculum, there is coverage of basic ideas such as the

words we use to describe degrees of certainty — words such as ‘might’, ‘is likely’ and ‘def-

initely’. Students learn how to associate these words with events in their own experience,

such as ‘Our teacher might be sick today’ or ‘I will definitely sleep tonight’.
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As these ideas are developed further, students will gain an understanding of chance or

probability in relation to events: phenomena that we can observe. They learn that prob-

ability is measured on a scale from zero to one, and that impossible events have a prob-

ability of zero, while events that are certain have a probability of one.

The treatment in this module follows the path of conventional probability theory. The

standard axioms are introduced, the important properties of probability are derived and

illustrated, and the key ideas of independence, mutually exclusive events and condi-

tional probabilities are covered. These are all foundational ideas for the other modules

on probability and statistics.

Content

How to think about probability

The approach to the study of chance in earlier years has been quite intuitive. This is

a reasonable approach which is sufficient for many purposes; many people who have

not studied probability in detail manage to think about chance events quite correctly.

For example, some professional gamblers know about odds and can manage risk in a

sensible way, even making an income, without necessarily having a strong mathematical

background.

However, this intuitive approach only goes so far. And this is the point in the curriculum

at which the consideration of probability is formalised. In order to do this, we start by

thinking in a fundamental way about probability statements.

The Bureau of Meteorology may say, for example, that the probability of rain tomorrow

is 20%, or 0.20 on a scale of 0 to 1. We are immediately reminded that a probability is a

number between 0 and 1 (inclusive), or 0% and 100% (inclusive) if the percentage scale

is used.

These are hardly different scales, they simply provide two different ways to express the

same number. Nonetheless, because both usages are common, it is important to recog-

nise in a given context whether probabilities are being expressed as numbers between 0

and 1, or percentages between 0% and 100%. There is potential for confusion, especially

where very small probabilities are concerned.

So if a probability is a number, how is it obtained, or defined? A probability does not

come from an ordinary mathematical operation in the usual sense of functions, such

as logarithms and the trigonometric functions. When we speak in a natural way about
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chance and probability, we refer to something that may happen (an event), and we assign

a number to the probability of the event.

This sounds a bit like a functional statement, which is an important insight. When we

write f (x) = 2, we say ‘ f of x equals 2’. By analogy, we say ‘the probability of rain tomor-

row equals 0.2’.

From this perspective, we can see that the domain of probability statements consists of

events: things that may happen. But — to state the obvious — there are many things that

may happen, and not only that, there is a plethora of types of events in a wide variety of

contexts. Ordinary mathematical functions — at any rate, the ones students have met so

far — tend to have simple numerical domains such as R or R+.

We need a different mathematical structure to deal with probability, which we discuss in

this module.

Random procedures

We want to talk about the probabilities of events: things that may happen. This sounds

impossibly broad and unwieldy, and it is. We therefore usually limit ourselves to a par-

ticular context in which possible outcomes are well defined and can be specified, at least

in principle, beforehand. We also need to specify the procedure that is to be carried out,

that will produce one of these outcomes.

We call such a phenomenon a random procedure or, alternatively, a random process.

It need not be an experiment; all that is required is that the process for obtaining the

outcome is well defined, and the possible outcomes are able to be specified. Why is the

word ‘random’ used? Its purpose is to indicate that the process is inherently uncertain:

before we make the observation, we do not know which of the possible outcomes will

occur, but we do know what is on the list of possible outcomes. Here are some examples:

1 A standard 20 cent coin is tossed: a rapid spin is delivered by the thumb to the coin as

it sits on the index finger; when it lands on the palm of the catching hand and is then

flipped onto the back of the other hand, we observe the uppermost face. The possible

outcomes are H (head) or T (tail).

2 A fair six-sided die is shaken vigorously in a cup and rolled onto a table; the number

of spots on the top side is recorded. The possible outcomes are 1,2,3,4,5,6.

3 A lottery such as Powerball is observed and the number of the ‘Powerball’ is recorded.

The possible outcomes for Powerball are 1,2,3, . . . ,45.

We start with these simple examples because probability statements associated with

them have an obvious intuitive meaning. For example, it is commonly accepted that
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the chance of obtaining a head when you toss a coin equals 1
2 , or 50%. Indeed, in many

sports, a coin toss is used to determine who makes an initial choice that may involve an

advantage, such as which end to kick to in football, whether to serve or receive in tennis,

and whether to bat or bowl in cricket.

Similarly, when dice are used in board games, it is usually implicitly assumed that each

possible outcome is equally likely, and therefore has probability 1
6 .

In commercial lotteries such as Tattslotto and Powerball, it is a regulatory requirement

that each outcome is equally likely.

But for the moment, we are just considering these examples as random procedures; we

will come to the issue of probability later in this module. And we will see that there is

more to it than these simple intuitions.

Here are some examples that are more complex:

1 In a game of Tetris, a sequence of three consecutive pieces is observed.

2 Five babies born in 1995 are followed up over their lives, and major health and mile-

stone events are recorded. This really involves several random procedures; a specific

one is considered later in this section.

3 273 students attempt Mathematical Methods in 2015. In June 2017, for each student,

it is recorded whether or not he or she is a tertiary student.

4 A new mobile phone is tested, and the time until its battery needs recharging is ob-

served.

Example: Tetris

In Tetris there are seven distinct shapes made up of four squares. In serious Tetris dis-

cussions they are given letter labels which roughly correspond to their shapes. These are

I for the long stick, T for the T-shape, and so on; the others are J, L, O, S and Z.

What are the possible sequences of three consecutive pieces that we may observe?

We can list them alphabetically:

III, IIJ, IIL, IIO, IIS, IIT, IIZ, IJI, IJJ, . . . , ZZZ.

There is a large number of possible sequences. How many?

Each position in the sequence can be any of the seven possible shapes, so the number

of possible sequences is

7×7×7 = 73 = 343.



A guide for teachers – Years 11 and 12 • {9}

The previous example illustrates the multiplication rule, which has been covered infor-

mally in earlier years. This rule tells us that, if a sequence of k separate processes are

considered, and the first can be done in n1 ways, the second in n2 ways, and so on, up to

the kth process having nk ways of being carried out, then the number of possible ways

that the k processes can be carried out successively is n1 ×n2 ×·· ·×nk .

Example: Five people born in 1995

For five people born in 1995, we may record a number of different health, illness and in-

jury phenomena, and usually a particular random procedure will focus on one of these.

We might consider the specific injury status: ‘experienced a broken leg at least once prior

to reaching age 20’. What are the possible outcomes for this random procedure?

Label the individuals with the letters A to E (the first five letters of the alphabet). We

use the symbol A0 to indicate that individual A does not experience a broken leg prior

to reaching age 20, and A1 to indicate that individual A does have this experience, and

similarly for the other four individuals. One possible outcome is A0B0C0D0E0. In this

outcome, none of the individuals has had a broken leg prior to turning 20. Each indi-

vidual either does or does not have at least one break, so the total number of possible

outcomes is 25 = 32.

Events and event spaces

An understanding of sets is crucial for dealing with events and the basic rules of proba-

bility: this includes set notation, the subset relationship, and operations on sets such as

union and intersection.

The event space E is the set of the possible distinct outcomes of the random process.

The event space is sometimes called the sample space. When rolling a normal six-sided

die and recording the uppermost face, the event space is E = {1,2,3,4,5,6}.

An event is a collection of possible outcomes, and therefore it is a subset of E . The event

A occurs if the observed outcome is in A, and does not occur if the observed outcome is

not in A. It is usual to denote an event by a capital letter, commonly near the start of the

alphabet: A,B ,C , . . . .

A
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The event space.
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Events may be expressed in words, inside quotation marks:

• In the die-rolling example, we can consider the event A = “a prime number is ob-

tained” = {2,3,5}.

• In the example of five people born in 1995, we can consider the event B = “exactly two

of the individuals experience at least one broken leg prior to turning 20”.

When expressing an event in words like this, the description must determine a subset

of E . We can regard something as an event only when it is true that, for every possible

outcome, we can say definitively whether or not the event has occurred.

An outcome is sometimes called an elementary event.

The following are events in any context:

• The event space E is itself an event, because it is a collection of outcomes. We can

think of E as the event “the random procedure occurs”.

• The empty set ∅ is a subset of E . The event ∅ is not very interesting; it contains no

outcomes.

The mathematical approach to probability requires that we have to be able to specify the

possible outcomes. Outcomes that we may be able to imagine, such as the die coming

to rest on a corner (leading to no number being uppermost), are often excluded from

consideration altogether. If we do want to consider an outcome as possible, it must be

included in the event space.

Recall that the domain of probability statements consists of events. Now that we un-

derstand that events are subsets of the event space E , we see that probability is a set

function. It maps subsets of E into the interval [0,1].

0 1

Pr
A

ε
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û û
û û
û
û
û
ûû
ûû ûû

û
û
û
ûû

û

ûûûû
û û ûû ûûû

û ûû

Probability as a set function.

Operations on events and relations between events

Events in random procedures are sets of possible outcomes. We now apply ideas about

sets to events; this will help us to think clearly about the events and, subsequently, their

probabilities.
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For a subset A of the event space E , the complementary set is

A′ = { x ∈ E : x ∉ A }.

In words, A′ is the set of all elements of the universal set E that are not in A.

For the event A, the complementary event is A′. For example:

• In the die-rolling example, if A = “a prime number is obtained”, then A′ = {1,4,6}.

• In the example of five people born in 1995, if B = “exactly two of the individuals experi-

ence at least one broken leg prior to turning 20”, then B ′ = “the number of individuals

experiencing at least one broken leg prior to turning 20 is 0, 1, 3, 4 or 5”.

We are interested in relations between events, and therefore in considering more than

one event.

For two events A and B , the intersection A ∩B is the event “A and B both occur”. In

the die-rolling example, if A = “a prime number is obtained” and B = “an even number

is obtained”, then A = {2,3,5} and B = {2,4,6}, so A ∩B = {2}. As is the case with sets

generally, we can consider the intersection of more than two events: the event A∩B ∩C

is the event “A and B and C all occur”, and so on.

For two events A and B , the union A ∪B is the event “either A or B occurs, or both”.

Equivalently, the union A ∪B is the event “at least one of A and B occurs”. For the die-

rolling example again, with A = {2,3,5} and B = {2,4,6}, the union is A ∪B = {2,3,4,5,6}.

We may be interested in the union of more than two events, such as A∪B ∪C .

We say that an event A is a subset of an event B , and write A ⊆ B , when all outcomes

in A are also in B . For example, suppose two dice are rolled. If A = “the sum of the two

numbers obtained is 12” and B = “a six is obtained on the first die”, then A = {(6,6)} and

B = {(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}, so A ⊆ B .

We say that two events A and B are mutually exclusive if their intersection is the empty

set, which means they have no outcomes in common. For example, an event A and its

complementary event A′ are mutually exclusive, since A′ consists of all outcomes that

are not in A. In the example of five people born in 1995, if we define X to be the number

of individuals experiencing a broken leg prior to turning 20, then the event “X = 1” and

the event “X = 0” are mutually exclusive: they cannot both occur.
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Exercise 1

Consider rolling two normal dice and observing the uppermost faces obtained.

a For this random procedure, which of the following are events?

i A = “the sum of the two numbers observed is a prime number”

ii B = “Barry sneezes just before the dice are rolled”

iii C = “at least one of the two dice shows an odd number”

iv D = “at least one of the two dice shows a six”

v E = “the outcome (6,6) is observed”

b Which outcomes are in the event A?

c How many outcomes are in D?

d Describe A∩E in words.

Exercise 2

Observations are made by the Bureau of Meteorology on a city’s weather every day, in a

systematic fashion. Suppose that we define a random procedure to be: record the daily

amounts of rainfall, to the nearest tenth of a millimetre, in August 2017.

a For this random procedure, which of the following are events?

i A = “the only days with recorded rainfall greater than 0.0 mm are Mondays”

ii B = “the main street floods on Tuesday 15 August”

iii C = “the total rainfall for the month is greater than 20.0 mm”

b Consider the following events:

• D = “the rainfall amount recorded on 31 August is greater than the total recorded

for the first 30 days”

• E = “no rainfall is recorded before the last seven days of the month”

• F = “the rainfall amount on Wednesday 16 August is 18.7 mm”.

Which of the following pairs of events are mutually exclusive?

i A and E ii A and F iii D and E iv E and F

c Describe the following events in words:

i A′ ii A∩E iii A∪C .
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The probability axioms

We now consider probabilities of events. What values can a probability take, and what

rules govern probabilities?

Some notation: We have used capital letters A,B , . . . for events, and we have observed

that probability can be thought of as a function that has an event as its argument. The

domain is the collection of all events, that is, all possible subsets of E . By analogy with

usual function notation, such as f (x), we use the notation Pr(A) to denoted the proba-

bility of the event A.

There are just three basic rules or axioms for probabilities, from which several other im-

portant rules can be derived. These fundamental rules were first spelled out in a formal

way by the Russian mathematician Andrey Kolmogorov.

The three axioms of probability

1 Pr(A) ≥ 0, for each event A.

2 Pr(E ) = 1.

3 If events A and B are mutually exclusive, that is, if A∩B =∅, then

Pr(A∪B) = Pr(A)+Pr(B).

The first axiom fits with our experience of measuring things, like length and area. Just as

the lowest possible value for a length is zero, the lowest possible value for a probability is

zero. Any other choice for the minimum numerical value of a probability would not work.

The second axiom says that the probability that something will happen is one. Another

way of thinking about the second axiom is this: When the random process is carried out,

we are certain that one of the outcomes in the event space E will occur.

The third axiom determines the way we work out probabilities of mutually exclusive

events. The axiom says that, if A and B are mutually exclusive, then the probability that at

least one of them occurs is the sum of the two individual probabilities. While this seems

very compelling, it cannot be proved; mathematically, it must be assumed.

Taken together, the three axioms imply that probabilities must be between zero and one

(inclusive): 0 ≤ Pr(A) ≤ 1, for any event A. We will prove this in the next section.

The choice of this numerical range for probabilities fits with relative frequencies from

data, which are always in this range. In earlier years, students learned how relative fre-

quencies are estimates of probabilities. We may estimate the probability of being left-

handed by finding the relative frequency, or proportion, of left-handed people in a ran-

dom sample of people. Any relative frequency of this sort must be a fraction between

zero and one; it cannot be negative, and it cannot be greater than one. This basic obser-

vation fits with the range for probabilities themselves: 0 ≤ Pr(A) ≤ 1.
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The probability scale is between zero and one, but in ordinary discourse about proba-

bilities the percentage scale is often used. In the media, in particular, we may read that

‘the chance of the government being re-elected is regarded as no better than 40%’. In

such usage, the scale for probability is 0% to 100%. There is no real difficulty with this,

provided it is very clear which scale is being used. This becomes particularly important

for small probabilities: if we say that the chance of an outcome is 0.5%, this is the same

as saying that the probability (on the usual zero-to-one scale) is 0.005. It is important to

be alert to the potential confusion here.

Technical note. In this module, we only consider examples where the event space E is

finite or countably infinite. The more general axiomatic treatment of probability, which

also covers examples where E is uncountable, is very similar to our treatment here. But

in the general situation, we do not insist that every subset of E is an event (and therefore

has an associated probability).

Useful properties of probability

We now look at some of the consequences of the three axioms of probability given in the

previous section.
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Event A is a subset of event B .

Property 1

If the event A is a subset of the event B , then Pr(A) ≤ Pr(B). That is,

A ⊆ B =⇒ Pr(A) ≤ Pr(B).

Proof
Consider events A and B such that A ⊆ B , as shown in the diagram above. Then

B = A ∪ (A′∩B), and the events A and A′∩B are mutually exclusive. Thus, by the

third axiom, Pr(B) = Pr(A)+Pr(A′∩B). The first axiom tells us that Pr(A′∩B) ≥ 0.

Hence, Pr(A) ≤ Pr(B).
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This property has a useful application. We write A ⇒ B to mean that, if A occurs, then B

occurs. So A ⇒ B is the same as A ⊆ B , which implies Pr(A) ≤ Pr(B). For example:

• Indiana Jones can only find the treasure (A)

• if he first solves the puzzle of the seven serpents (B);

so A ⊆ B and therefore Pr(A) ≤ Pr(B); his chance of finding the treasure is at most equal

to his chance of solving the puzzle.

While property 1 is important, it is rather obvious.

Property 2

0 ≤ Pr(A) ≤ 1, for each event A.

Proof
The first axiom says that Pr(A) ≥ 0. It is true for every event A that A ⊆ E . Hence

Pr(A) ≤ Pr(E ), by property 1. But Pr(E ) = 1, by the second axiom, and so it follows

that Pr(A) ≤ 1.

This property formalises the scale for probabilities, given the axioms.
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The empty event.

Property 3

Pr(∅) = 0.

Proof
Choose any event A. Then the two events A and the empty set ∅ are mutually

exclusive, so Pr(A ∪∅) = Pr(A)+Pr(∅), by the third axiom. Since A ∪∅ = A, this

gives Pr(A) = Pr(A)+Pr(∅). Hence, Pr(∅) = 0.

It would be rather strange if the probability of the empty set was anything other than

zero, so it is reassuring to confirm that this is not so: Pr(∅) = 0, as expected.
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An event A and its complementary event A′.

Property 4

Pr(A′) = 1−Pr(A), for each event A.

Proof
The events A and A′ are mutually exclusive, so Pr(A ∪ A′) = Pr(A)+Pr(A′), by the

third axiom. But A∪ A′ = E , and therefore Pr(A′) = Pr(E )−Pr(A). According to the

second axiom, Pr(E ) = 1. Hence, Pr(A′) = 1−Pr(A).

This property is surprisingly useful and is applied frequently. It is most effective when

the probability of the event of interest is difficult to calculate directly, but the probability

of the complementary event is known or easily calculated.

Exercise 3

Suppose that, in a four-child family, the probability of all four children being boys is 0.07.

What is the probability that a four-child family contains at least one girl?

Property 5 (Addition theorem)

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B), for all events A and B .
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û
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BA ⋂ B’

A ⋂ B

û

B B ′

A A∩B A∩B ′

A′ A′∩B A′∩B ′

Two representations of the addition theorem.

Both the diagram and the table above give representations of the event space E in terms

of the two events A and B and their complements.

The impression we get from the diagram, from the table, or just using basic logic is that,

if we add together the probability of A and the probability of B , then A ∩B is included

in both events, so it has been counted twice. Hence, to obtain the probability of at least

one of A and B occurring, that is, to obtain Pr(A∪B), we need to subtract Pr(A∩B) from
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Pr(A)+Pr(B). This justifies the formula given by the addition theorem (property 5). We

can demonstrate the result more formally, as follows.

Proof
To devise a formal proof of the addition theorem, we construct mutually exclusive

events in a helpful way, and use the third axiom of probability.

We can express the union of A and B as A∪B = A∪ (A′∩B), and the events A and

A′∩B are mutually exclusive. Also, B = (A∩B)∪(A′∩B), and the two events A∩B

and A′∩B are mutually exclusive. By applying the third axiom to the first of these

relationships, we get that

Pr(A∪B) = Pr(A)+Pr(A′∩B).

And using the third axiom for the second relationship, we find that

Pr(B) = Pr(A∩B)+Pr(A′∩B)

=⇒ Pr(A′∩B) = Pr(B)−Pr(A∩B).

Hence, Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B), as required.

Exercise 4

Lego sells ‘minifigures’. There are 16 distinct minifigures, and they are distributed at ran-

dom among shops (it is said). Furthermore, the minifigures cannot be identified prior to

purchase and removal of the packaging. A young child wishes to obtain the ‘Pirate Cap-

tain’, one of the 16 figures in Series 8. She persuades her parent to buy a minifigure at two

different shops. Define the events:

• A = “Pirate Captain is purchased at the first shop”

• B = “Pirate Captain is purchased at the second shop”.

Assume that the distribution of the minifigures is random across shops, and assume that

Pr(A∩B) = 1
256 .

a What is Pr(A)? Pr(B)?

b What is the probability of the child’s wishes being satisfied?

c Describe each of the following events in words:

i B ′ ii A′∪B ′ iii A∩B ′ iv A′∩B ′.

d Which event is more probable: A∪B or A′∩B ′?
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Assigning probabilities

So far we have said little about how probabilities can be assigned numerical values in a

random procedure. We know that probabilities must be in the interval [0,1], but how do

we know what the actual numerical value is for the probability of a particular event?

Symmetry and random mixing

Ideas for the assignment of probabilities have been progressively developed in earlier

years of the curriculum. One important approach is based on symmetry. The outcome

of rolling a fair die is one of the most common examples of this. Even small children will

readily accept the notion that the probability of obtaining a three, when rolling a fair die,

is 1
6 . Where does this idea come from, and what assumptions are involved?

A classic ‘fair die’ is a close approximation to a uniform cube. (The word ‘approximation’

is used here because many dice have slightly rounded corners and edges.) A cube, by

definition, has six equal faces, all of which are squares. So if we roll the die and observe

the uppermost face when it has come to rest, there are six possible outcomes. The sym-

metry of the cube suggests there is no reason to think that any of the outcomes is more or

less likely than any other. So we assign a probability of one sixth to each of the possible

outcomes. Here E = {1,2,3,4,5,6} and Pr(i ) = 1
6 , for each i = 1,2, . . . ,6.

What assumptions have we made here? One important aspect of this process is the

rolling of the die. Suppose my technique for ‘rolling’ the die is to pick it up and turn

it over to the opposite face. This cannot produce all six outcomes. Furthermore, the two

outcomes that are produced by this process occur in a non-random systematic sequence.

So we observe that, with randomising devices such as coins, dice and cards, there is an

important assumption about random mixing involved. When playing games like Snakes

and Ladders that use dice, we are familiar with players shaking the cup extra vigorously

in the interests of a truly random outcome, and on the other hand, those trying to slide

the die from the cup in order to produce a six!

Exercise 5

Consider each of the following procedures. How random do you think the mixing is likely

to be?

a A normal coin flip that lands on your hand.

b A normal coin flip that lands on the floor.

c A die shaken vigorously inside a cup ‘sealed’ at the top by your palm, then rolled onto

the table.
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d An ‘overhand’ shuffle of cards; this is the shuffle that we usually first learn.

e A ‘riffle’ shuffle of cards: in this shuffle, two piles of cards are rapidly and randomly

interwoven by gradual release from the two thumbs.

f The blast of air blown into the sphere containing the balls in Powerball.

g The random number generator that produces the next Tetris shape.

h The hat used for drawing raffles at the footy club.

Link

For a guide to various card shuffles (including the overhand and riffle shuffles), see

www.pokerology.com/poker-articles/how-to-shuffle-cards/

There are also more subtle aspects of symmetry to be considered. In the case of a conven-

tional die, the shape may be cubical and hence symmetrical. But is that enough? We also

need uniform density of the material of the cube, or at least an appropriately symmetric

distribution of mass (some dice are hollow, for example). If a wooden die is constructed

with a layer of lead hidden under one face, this would violate the assumption that we

make in assigning equal probabilities to all six outcomes.

What about coin tossing and symmetry? We may assume that the coin itself is essentially

a cylinder of negligible thickness made from uniform density metal with two perfectly

flat sides. No actual coin is like this. The faces of coins have sculpted shapes on them

that produce the images we see. These shapes are clearly not actually symmetric. How

much does this matter?

Exercise 6

Use an ordinary 20 cent coin to carry out the following

experiment. Find the flattest surface you can. Starting

with the coin on its edge, spin the coin fast; usually this

is most effectively done by delivering the spin from the

index finger of one hand on one side of the coin against

the thumb of the other hand on the other side, as shown

in the photo.

The spin needs to be uninterrupted by other objects and

stay on the flat surface throughout. There is a bit of skill

required to get the coin to spin rapidly; practise until you

can get it to spin for about ten seconds before coming

to rest.

Starting position for
non-standard spin.

Once you are adept at this technique, on a given spin you can save time near the end of

the spin: when it is clear what the result will be, you can stop the motion and record it.

Do this 30 times. How many heads and tails do you get?
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When we use symmetry to assign probabilities, it is important that the outcomes we con-

sider are truly symmetric, and not just superficially so. It is definitely not enough to know

merely the number of possible outcomes of a random process. Just because there are

only k possible outcomes does not imply that each one of them has probability equal

to 1
k ; there needs to be a basis for assuming symmetry. Often a list of possible ‘outcomes’

is really a list of events, rather than elementary events. In that case, even if the elemen-

tary events are equiprobable, there is no need for the derived events to be so.

Exercise 7

A standard deck of cards is well shuffled and from it I am dealt a hand of four cards. In

my hand I can have 0, 1, 2, 3 or 4 aces: five possibilities altogether. So the chance that my

hand has four aces is equal to 1
5 = 0.2.

What is wrong with this argument?

Relative frequencies

A second way to assign numerical values for probabilities of events is by using relative

frequencies from data. In fact, this is probably the most common method. Strictly speak-

ing, what we are doing is estimating probabilities rather than assigning the true numeri-

cal values.

For example, we may have data from 302 incidents in which school children left their

bag at the bus stop briefly to run home and get something that they forgot. In 38 of

these incidents, the bag was not there when they returned. So we might estimate the

probability of losing a school bag as

38

302
≈ 0.126,

or 12.6% on the percentage scale.

Equally probable outcomes

There are many contexts in which it is desirable to ensure equal probabilities of out-

comes. These include commercial games of chance, such as lotteries and games at casi-

nos, and the allocation of treatments to patients in randomised controlled trials. Ran-

domising devices are used to achieve this.
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Example: Election ballots (California)

It is understood that there is a ‘positional bias’ in the voting behaviour of undecided

voters in elections; that is, some of them tend to give their voting preference in the order

that the candidates are listed on the ballot paper.

For this reason, in California, about three months before an election, the Secretary of

State produces a random ordering of the letters of the alphabet. This is used to define

the order in which the names of candidates are printed on the ballot papers. What’s

more, it is applied not just to the first letter of each candidate’s name, but to the other

letters in the names also.

Example: Powerball

The commercial lottery Powerball has operated in Australia since 1996. There are 45

balls that can appear as the Powerball. A probability model based on symmetry and

random mixing implies that the chance of any particular ball appearing as the Powerball

is 1
45 ≈ 0.022. (We are rounding to three decimal places here.) This is the idealised model

that is intended on grounds of fairness for those who play the game, and we may believe

that the model applies, to a very good approximation. There are laws governing lotteries

that aim to ensure this.

At the time of writing, there have been 853 Powerball draws. The following table shows

the relative frequencies of some of the 45 numbers from the 853 draws.

Relative frequencies for the Powerball

Powerball 1 2 3 4 5 . . . 43 44 45

Relative

frequency

21

853

14

853

20

853

21

853

15

853
. . .

19

853

22

853

22

853

0.025 0.016 0.023 0.025 0.018 . . . 0.022 0.026 0.026

We may check assumptions about randomness by looking at the relative frequencies.

We may ask: Are they acceptably close to the probability implied by a fair draw, which

is 0.022? Obviously, if we are to do this properly, we must look at the whole distribution,

and not just the part shown here.
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The previous example is related to testing in statistical inference, in which a model for

a random process is proposed and we examine data to see whether it is consistent with

the model. This is not part of the topic of probability directly, but it indicates one way in

which probability models are used in practice.

Exercise 8

During the Vietnam War, the Prime Minister Robert Menzies introduced conscription

to national army service for young men. However, not all eligible men were conscripted:

there was a random process involved. Two birthday ballots a year were held to determine

who would be called up. Marbles numbered from 1 to 366 were used, corresponding

to each possible birthdate. The marbles were placed in a barrel and a predetermined

number were drawn individually and randomly by hand. There were two ballots per

year, the first for birthdates from 1 January to 30 June and the second for birthdates from

1 July to 31 December. In a given half year, if a birthdate was drawn, all men turning 20

on that date in that year were required by law to present themselves for national service.

This occurred from 1965 until 1972, when Gough Whitlam’s ALP government abolished

the scheme.

Were men born on 29 February more likely to be conscripted, or less likely? Or were their

chances the same as other men? What assumptions have you made?

Links
• For a photo of the marbles, see vrroom.naa.gov.au/print/?ID=19537

• For the selected birthdates, see www.awm.gov.au/encyclopedia/viet_app/

A previous example described the method used to ensure electoral fairness in California.

The next example concerns an issue of electoral fairness in Australia.

Example: Election ballots (Australian Senate, 1975)

The 1975 Senate election in Australia occurred in a heightened political climate. The

Australian Labor Party (ALP) government, voted into power in 1972 and returned in

1974, was losing popularity. In November 1975, the government was dismissed by the

Governor-General, Sir John Kerr, and an election was called which involved a ‘double

dissolution’ of both houses of parliament. Between the dismissal on 11 November and

the elections on 13 December, there were many protests, demonstrations and hot polit-

ical debates. In the election for the Senate, the two main political parties were the ALP

and the Liberal–National coalition; between them, they received 80% of the votes cast.

The following table gives some data from the draws for positions on the ballot papers

in this Senate election. The table shows the positions of the Liberal–National coalition
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(L/N) and the ALP for each of the six states and two territories. Also shown in each case

is the number of groups participating in the election. In WA and Tasmania, the Liberal

Party and the National Party were separate; elsewhere they had a joint Senate team.

Ballot papers for the 1975 Senate election

State or territory Position of Number of groups

L/N ALP

NSW 2 8 10

Vic 1 6 8

Qld 2 6 7

SA 1 3 9

WA 7,1 10 11

Tas 1,2 5 6

ACT 1 2 4

NT 1 3 3

The positions on each ballot paper were determined by drawing envelopes out of a box.

Does the result of this appear to you to be appropriately random?

Among those who noted the strangeness of this distribution were two astute Melbourne

statisticians, Alison Harcourt and Malcolm Clark. Their analysis of this result formed

the basis of a submission to the Joint Select Committee on Electoral Reform in 1983,

and this eventually led to a change in the Commonwealth Electoral Act. The process

now involves much more thorough random mixing, using ‘double randomisation’ and a

process similar to that used in Tattslotto draws.

Reference

R. M. Clark and A. G. Harcourt, ‘Randomisation and the 1975 Senate ballot draw’, The Australian

Journal of Statistics 33 (1991), 261–278.

Conditional probability

Like many other basic ideas of probability, we have an intuitive sense of the meaning and

application of conditional probability from everyday usage, and students have seen this

in previous years.
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Suppose the chance that I leave my keys at home and arrive at work without them is 0.01.

Now suppose I was up until 2 a.m. the night before, had to hurry in the morning, and used

a different backpack from my usual one. What then is the chance that I don’t have my

keys? What we are given — new information about what has occurred — can change the

probability of the event of interest. Intuitively, the more difficult circumstances of the

morning described will increase the probability of forgetting my keys.

Consider the probability of obtaining 2 when rolling a fair die. We know that the proba-

bility of this outcome is 1
6 . Suppose we are told that an even number has been obtained.

Given this information, what is the probability of obtaining 2? There are three possible

even-number outcomes: 2, 4 or 6. These are equiprobable. One of these three outcomes

is 2. So intuition tells us that the probability of obtaining 2, given that an even num-

ber has been obtained, is 1
3 . Similar reasoning leads to the following: The probability

of obtaining 2, given that an odd number has been obtained, equals zero. If we know

that an odd number has been obtained, then obtaining 2 is impossible, and hence has

conditional probability equal to zero.

Using these examples as background, we now consider conditional probability formally.

When we have an event A in a random process with event space E , we have used the

notation Pr(A) for the probability of A. As the examples above show, we may need to

change the probability of A if we are given new information that some other event D has

occurred. Sometimes the conditional probability may be larger, sometimes it may be

smaller, or the probability may be unchanged: it depends on the relationship between

the events A and D .

We use the notation Pr(A|D) to denote ‘the probability of A given D’. We seek a way of

finding this conditional probability.

It is worth making the observation that, in a sense, all probabilities are conditional: the

condition being (at least) that the random process has occurred. That is, it is reasonable

to think of Pr(A) as Pr(A|E ).

It helps to think about conditional probability using a suitable diagram, as follows.
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Illustrating conditional probability.
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If the event D has occurred, then the only elementary events in A that can possibly have

occurred are those in A∩D . The greater (or smaller) the probability of A∩D , the greater

(or smaller) the value of Pr(A|D). Logic dictates that Pr(A|D) should be proportional to

Pr(A∩D). That is,

Pr(A|D) = c ×Pr(A∩D),

for some constant c determined by D .

We are now in a new situation, where we only need to consider the intersection of events

with D ; it is as if we have a new, reduced event space. We still want to consider the

probabilities of events, but they are all revised to be conditional on D , that is, given that

D has occurred.

The usual properties of probability should hold for Pr( · |D). In particular, the second

axiom of probability tells us that we must have Pr(E |D) = 1. Hence

1 = Pr(E |D) = c Pr(E ∩D) = c Pr(D),

which implies that

c = 1

Pr(D)
.

We have obtained the rule for conditional probability: the probability of the event A

given the event D is

Pr(A|D) = Pr(A∩D)

Pr(D)
.

Since Pr(D) is the denominator in this formula, we are in trouble if Pr(D) = 0; we need to

exclude this. However, in the situations we consider, if Pr(D) = 0, then D cannot occur;

so in that circumstance it is going to be meaningless to speak of any probability, given

that D has occurred.

We can rearrange this equation to get another useful relationship, sometimes known as

the multiplication theorem:

Pr(A∩D) = Pr(D)×Pr(A|D).

We can interchange A and D and also obtain

Pr(A∩D) = Pr(A)×Pr(D|A).

This is now concerned with the probability conditional on A.
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Independence

The concept of independence of events plays an important role throughout probability

and statistics. The most helpful way to think about independent events is as follows.

We first consider two events A and B , and assume that Pr(A) 6= 0 and Pr(B) 6= 0. The

events A and B are independent if

Pr(A|B) = Pr(A).

This equation says that the conditional probability of A, given B , is the same as the un-

conditional probability of A. In other words, given that we know that B has occurred, the

probability of A is unaffected.

Using the rule for conditional probability, we see that the events A and B are independent

if and only if

Pr(A∩B) = Pr(A)×Pr(B).

This equation gives us a useful alternative characterisation of independence in the case

of two events. The symmetry of this equation shows that independence is not a direc-

tional relationship: the events A and B are independent if Pr(B |A) = Pr(B). So, for inde-

pendent events A and B , whether B occurs has no effect on the probability that A occurs,

and similarly A has no effect on the probability that B occurs.

If events A and B are not independent, we say that they are dependent. This does not

necessarily mean that they are directly causally related; it just means that they are not

independent in the formal sense defined here.

Events that are physically independent are also independent in the mathematical sense.

Mind you, physical independence is quite a subtle matter (keeping in mind such phe-

nomena as the ‘butterfly effect’ in chaos theory, the notion that a butterfly flapping its

wings in Brazil could lead to a tornado in Texas). But we often take physical indepen-

dence as the working model for events separated by sufficient time and/or space. We

may also assume that events are independent based on our consideration of the inde-

pendence of the random processes involved in the events. Very commonly, we assume

that observations made on different individuals in a study are independent, because the

individuals themselves are separate and unrelated.

For example, if A = “my train is late” and B = “the clue for 1 across in today’s cryptic cross-

word involves an anagram”, we would usually regard A and B as independent. However,

if C = “it is raining this morning”, then it may well be that A and C are not independent,

while B and C are independent.

While physical independence implies mathematical independence, the converse is not

true. Events that are part of the same random procedure and not obviously physically
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independent may turn out to obey the defining relationship for mathematical indepen-

dence, as the following example demonstrates.

Example

Suppose a fair die is rolled twice. Consider the following two events:

• A = “a three is obtained on the second roll”

• B = “the sum of the two numbers obtained is less than or equal to 4”.

In this case, somewhat surprisingly, we can show that Pr(B |A) = Pr(B). Thus A and B are

mathematically independent, even though at face value they seem related.

To see this, we write the elementary events in this random process as (x, y), with x the

result of the first roll and y the result of the second roll. Then:

• A = {(1,3), (2,3), (3,3), (4,3), (5,3), (6,3)}

• B = {(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)}.

There are 36 elementary events, each with probability 1
36 , by symmetry. So Pr(A) = 6

36 = 1
6

and Pr(B) = 6
36 = 1

6 . We also have A∩B = {(1,3)} and so Pr(A∩B) = 1
36 . Hence,

Pr(B |A) = Pr(A∩B)

Pr(A)
=

1
36
1
6

= 1

6
= Pr(B).

Thus A and B are independent. Alternatively, we can check independence by calculating

Pr(A∩B) = 1
36 = 1

6 × 1
6 = Pr(A)×Pr(B).

Such examples are rare in practice and somewhat artificial. The key point is that physical

independence implies mathematical independence.

Exercise 9

For each of the following situations, discuss whether or not the events A and B should be

regarded as independent.

a A = “Powerball number is 23 this week”

B = “Powerball number is 23 next week”

b A = “Powerball number is 23 this week”

B = “Powerball number is 24 this week”

c A = “maximum temperature in my location is at least 33 ◦C today”

B = “maximum temperature in my location is at least 33 ◦C six months from today”

d A = “the tenth coin toss in a sequence of tosses of a fair coin is a head”

B = “the first nine tosses in the sequence each result in a head”
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The previous exercise illustrates some important points. It is usually assumed that games

of chance involving gambling entail independence. Some people may suspect that these

games (such as lotteries and roulette) are rigged, and there are indeed some famous ex-

amples of lottery scandals. But the regulations of such games are designed to create an

environment of randomness that involves independence between different instances of

the same game. So knowing the Powerball outcome this week should not change the

probability distribution for next week; each ball should be equally likely as usual.

On the other hand, the events “Powerball is 23 this week” and “Powerball is 24 this week”

are incompatible: on any single Powerball draw there can only be one Powerball number.

So these events are mutually exclusive (their intersection is empty) and the probability

that they both occur is zero.

Mutually exclusive events are definitely not independent; they are dependent. If two

events are mutually exclusive, then given that one occurs, the conditional probability

of the other event is zero. That is, for mutually exclusive events C and D (both having

non-zero probability), we have Pr(C |D) = 0 6= Pr(C ). Alternatively, we may observe that

Pr(C ∩D) = 0 6= Pr(C )Pr(D).

Students often confuse the two concepts, but mutually exclusive and independent are

quite different. The following table serves as a reminder.

Mutually exclusive vs independent

Mutually exclusive events Independent events

If one occurs, the other cannot.
Knowing that one occurs does not affect

the probability of the other occurring.

A∩B =∅ and so Pr(A∩B) = 0 Pr(A∩B) = Pr(A)Pr(B)

What about the maximum-temperature example from exercise 9? This is a great deal

more subtle. It might seem that two days six months apart, even at the same location,

are sufficiently distant in time for the maximum temperatures to be independent. But

for Adelaide (say), a maximum temperature of at least 33 ◦C could be a fairly clear indi-

cation that the day is not in winter. This would make the day six months from now not in

summer, which might alter the probability of that day having a maximum temperature

of at least 33 ◦C, compared to not knowing that today’s temperature is at least 33 ◦C.

And the sequence of coin tosses? This rather depends on what we assume about the coin

and the tossing mechanism. As indicated in exercises 5 and 6, there is more than one

way to toss a coin. Even for the standard method — delivering the spin by a sudden flick

of the thumb with the coin positioned on the index finger — successive tosses may not

be truly independent if the coin tosser has learned to control the toss.
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Just as we may use relative frequencies as estimates of probabilities in general, we may

use conditional relative frequencies as estimates of conditional probabilities, and we

may examine these to evaluate whether independence is suggested or not.

Recall the example of 302 incidents in which school children left their bag at the bus stop

briefly to run home and get something. In 38 of these incidents, the bag was not there

when they returned, and we used the relative frequency 38
302 ≈ 0.126, or 12.6%, to estimate

the chance that a bag will not be there in these circumstances.

In 29 of these incidents, the bag left at the bus stop was a Crumpler bag. Among these

29 incidents, the Crumpler bag was no longer at the bus stop upon return in 10 cases.

So the relative frequency of the bag being gone, given that it was a Crumpler bag, was
10
29 ≈ 0.345, or 34.5% on the percentage scale. The difference between the conditional

relative frequency of 0.345 and the unconditional one of 0.126 suggests that the bag being

gone upon return is not independent of the bag being a Crumpler bag.

We next prove an important property of independence.

Property

If events A and B are independent, then the events A and B ′ are independent.

Proof
Suppose that A and B are independent. Then Pr(A∩B) = Pr(A)×Pr(B). Therefore

Pr(A∩B ′) = Pr(A)−Pr(A∩B)

= Pr(A)−Pr(A)×Pr(B) since A and B are independent

= Pr(A)
(
1−Pr(B)

)
= Pr(A)×Pr(B ′).

Hence A and B ′ are independent. (It follows by symmetry that A′ and B are inde-

pendent, and therefore that A′ and B ′ are independent.)

Exercise 10

Suppose that two separate experiments with fair dice are carried out. In the first experi-

ment, a die is rolled once. If X is the outcome of the roll, then Y = X +1 is recorded. In

the second experiment, two dice are rolled. The sum U of the two outcomes is recorded,

and the maximum V of the two outcomes is recorded.

a What are the possible values of Y , U and V ?

b Which is more likely: U > Y or U < Y ?

c Which is more likely: V > Y or V < Y ?
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Independence for more than two events

Our discussion of independence has so far been limited to two events. The extension to

an arbitrary number of events is important.

If the events A1, A2, . . . , An are mutually independent, then

Pr(A1 ∩ A2 ∩·· ·∩ An) = Pr(A1)Pr(A2) · · ·Pr(An). (∗)

This is a necessary condition for mutual independence, but it is not sufficient. As we

might reasonably expect, mutual independence is actually characterised by statements

about conditional probabilities.

Essentially, the idea is the natural extension of the case of two events: We say that the

events A1, A2, . . . , An are mutually independent if, for each event Ai , all of the possible

conditional probabilities involving the other events are equal to the unconditional prob-

ability Pr(Ai ). Informally, this means that regardless of what happens among the other

events, the probability of Ai is unchanged; and this must be true for each event Ai , where

i = 1,2, . . . ,n.

We can express this definition formally as follows: Events A1, A2, . . . , An are mutually in-

dependent if

Pr(Ai ) = Pr(Ai | A j1 ∩ A j2 ∩·· ·∩ A jm ),

for all i and for every possible combination j1, j2, . . . , jm such that jk 6= i .

What happens, for example, when n = 3? This definition says that events A1, A2 and A3

are mutually independent if

Pr(A1) = Pr(A1|A2) = Pr(A1|A3) = Pr(A1|A2 ∩ A3)

and similarly for A2 and A3.

The equation (∗) above follows from this definition. The reason that (∗) is not sufficient

to indicate mutual independence, however, is that it is possible for (∗) to be satisfied,

while at the same time A1 and A2 are not independent of each other.

Example: Dice games

A Flemish gentleman called Chevalier de Méré played games of chance using dice in

around 1650. He played one game where a fair die is rolled four times; it is assumed that

the outcomes are independent. What is the chance of getting at least one six? De Méré

reasoned as follows. On any single roll, the probability of getting a six is 1
6 . There are

four rolls, so the probability of getting a six at some stage is 4× 1
6 = 2

3 . The flaw in this

reasoning should be obvious: What if there were seven rolls?
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Another game he played was to roll two dice 24 times, and consider the chance of getting

a double six at least once. He reasoned the same way for this game. On any single roll,

the chance of a double six is 1
36 . There are 24 rolls, so the probability of getting a double

six at some stage in the sequence of 24 rolls is 24× 1
36 = 2

3 .

Because of the second calculation in particular, he was betting on this outcome occur-

ring, when playing the game . . . and losing in the long run. Why? Rather than persisting

doggedly with his strategy, he posed this question to Blaise Pascal, who correctly anal-

ysed his chances, as shown below. This was the beginning of the systematic study of

probability theory.

In the second game, the chance of a double six on any single roll of the two dice is 1
36 ,

which we obtain by using the independence of the outcomes on the two dice:

Pr(double six) = Pr(six on first die)×Pr(six on second die)

= 1

6
× 1

6
= 1

36
.

To work out the probability of at least one double six in 24 rolls, we are going to apply a

general rule which we have met in a number of contexts already.

The probability of an event occurring at least once in a sequence of n repetitions is equal

to one minus the probability that it does not occur. If X is the number of times the event

occurs, then

Pr(X ≥ 1) = 1−Pr(X = 0).

This rule is an application of property 4 (from the section Useful properties of probabil-

ity), since “at least one” and “none” are complementary events. Note that the rule does

not require that the events in the sequence of repetitions are independent (although

when they are, the calculations are easier).

The application to de Méré’s second game is this: On any given roll of the two dice, the

probability of not obtaining a double six is 35
36 . If the 24 rolls are mutually independent,

the probability that each of the 24 rolls does not result in a double six can be obtained as

the product of the individual probabilities, using equation (∗), and is therefore equal to(35
36

)24 ≈ 0.509. This means that the probability of at least one roll resulting in a double

six is approximately 1−0.509 = 0.491. The fact that this probability is less than 1
2 (and

considerably less than the value 2
3 calculated by de Méré) explains why he was losing

money on his bets.
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Exercise 11

a A boat offers tours to see dolphins in a partially enclosed bay. The probability of

seeing dolphins on a trip is 0.7. Assuming independence between trips with regard

to the sighting of dolphins, what is the probability of not seeing dolphins:

i on two successive trips?

ii on sevens trips in succession?

b A machine has four components which fail independently, with probabilities of fail-

ure 0.1, 0.01, 0.01 and 0.005. Calculate the probability of the machine failing if:

i all components have to fail for the machine to fail

ii any single component failing leads to the machine failing.

c Opening the building of an organisation in the morning of a working day is a respon-

sibility shared between six people, each of whom has a key. The chances that they

arrive at the building before the required time are, respectively, 0.95, 0.90, 0.80, 0.75,

0.50 and 0.10. Do you think it is reasonable to assume that their arrival times are mu-

tually independent? Assuming they are, find the chance that the building is opened

on time.

d In the assessment of the safety of nuclear reactors, calculations such as the following

have been made.

In any year, for one reactor, the chance of a large loss-of-coolant accident

is estimated to be 3×10−4. The probability of the failure of the required

safety functions is 2×10−3. Therefore the chance of reactor meltdown via

this mode is 6×10−7.

What do you think of this argument?

The next example illustrates the somewhat strange phenomenon of events that are not

mutually independent but nevertheless satisfy equation (∗).

Example

Consider the random procedure of tossing a fair coin three times. Define the events:

• A = “at least two heads”

• B = “the last two tosses give the same result”

• C = “the first two results are heads or the last two results are tails”.
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Then, using an obvious notation:

• A = {HHT,HTH,THH,HHH}

• B = {HHH,THH,HTT,TTT}

• C = {HHH,HHT,HTT,TTT}.

Thus A∩B ∩C = {HHH}. Assuming independence of the tosses, there are eight elemen-

tary outcomes (two for each of the three tosses), all equally probable, so the probability

of each of them equals 1
8 . Hence

Pr(A∩B ∩C ) = 1
8 = (1

2

)3 = Pr(A)Pr(B)Pr(C ).

So equation (∗) is satisfied. However, B ∩C = {HHH,HTT,TTT} and hence

Pr(B ∩C ) = 3
8 6= 1

4 = (1
2

)2 = Pr(B)Pr(C ).

It follows that B and C are not independent, and hence the events A, B and C are not

mutually independent.

Examples like the previous one are not really of practical importance. Of much greater

importance is the fact that, if events are physically independent, then they are mutually

independent, and so then equation (∗) is true. This is the result that is useful in practice.

Tree diagrams

Probability problems sometimes involve more than one step or stage, and at the different

stages various outcomes may occur. It can be tricky to keep track of the stages, outcomes

and probabilities, and a ‘tree diagram’ is often helpful. Such a diagram is usually labelled

in a sensible way with the outcomes that may occur at each stage and their probabilities.

The probabilities of the outcomes at the ends of the branches of the tree may be found

using the multiplication rule.

Example: Traffic lights

Rose rides a bicycle to work. There is a sequence of two sets of traffic lights on her route,

not far apart. For simplicity, we ignore amber and assume the lights are only red or green.

Suppose the probability that the first set is green when she arrives at it is 0.3. If she gets

through on green at the first set, the probability that the second set is green when she

arrives is 0.6; if she has to stop on red at the first set, the probability that the second set

is green when she arrives is 0.4. What is the probability that she gets through both sets

on green?
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Define Gi to be the event that set i is green on her arrival, and similarly for Ri (red at

set i ). We need to find Pr(G1 ∩G2); note how the word ‘both’ in the question translates

to a calculation of the probability of an intersection between two events. We use the

multiplication theorem:

Pr(G1 ∩G2) = Pr(G1)Pr(G2|G1) = 0.3×0.6 = 0.18.

In this calculation it is important to recognise the conditional probabilities we are given.

‘If she gets through on green at the first set’ is language that tells us that a conditional

probability is being provided, the condition being the event G1, that is, she meets a green

light at the first set.

There are several things that can happen, as shown in the following tree diagram.

Pr(G1) = 0.3

Pr(G2|G1) = 0.6

Pr(G1⋂G2)

= 0.3 x 0.6
= 0.18

Pr(G1⋂R2)

= 0.3 x 0.4
= 0.12

Pr(R1⋂G2)

= 0.7 x 0.4
= 0.28

Pr(R1⋂R2)

= 0.7 x 0.6
= 0.42

Pr(R2|G1) = 0.4

Pr(G2|R1) = 0.4

Pr(R2|R1) = 0.6

Pr(R1) = 0.7

1

1

21

21

21

21

Tree diagram for the traffic-lights example.

With the probabilities at the first stage and the conditional probabilities at the second

stage clearly labelled, it is a straightforward exercise to move along the branches of the

tree, multiplying, to arrive at the probabilities of outcomes at the end of the branches;

each case uses the multiplication theorem. The outcomes at the ends of the branches

are intersections between events at the first and second stages.
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What is the probability that the second set is green when she meets it? Note that the

problem, as posed, does not specify this. We are only given conditional probabilities for

the second set of lights. However, we can obtain the probability Pr(G2) that she meets

green at the second set by considering the two events G1 ∩G2 and R1 ∩G2. These are

mutually exclusive, and G2 = (G1 ∩G2)∪ (R1 ∩G2). Hence Pr(G2) = 0.18+0.28 = 0.46.

Note that the events G1 and G2 are not independent, since

Pr(G1 ∩G2) = 0.18 and Pr(G1)Pr(G2) = 0.3×0.46 = 0.138,

and therefore Pr(G1 ∩G2) 6= Pr(G1)Pr(G2).

Exercise 12

A player pays $4 to play the following game. A fair die is rolled once. If the outcome is

not a prime number, the player loses. If a prime number is rolled (2, 3 or 5), the die is

rolled again. If the outcome of the second roll is not a prime number, the player loses. If

a prime number is rolled the second time, the player is paid an amount (in dollars) equal

to the sum of the outcomes of the two rolls of the die.

Draw the applicable tree diagram and answer the following:

a What is the probability of losing at the first roll?

b What is the probability of winning $6?

c What is the probability of winning?

The law of total probability

We saw in the traffic-lights example from the previous section that it can be convenient to

calculate the probability of an event in a somewhat indirect manner, by summing prob-

abilities involving intersections. We now consider that process in more detail.

Events A1, A2, . . . , Ak are said to be a partition of the event space if they are mutually

exclusive and their union is the event space E . That is, if events A1, A2, . . . , Ak are such

that

• Ai ∩ A j =∅, for all i 6= j , and

• A1 ∪ A2 ∪·· ·∪ Ak = E ,

then A1, A2, . . . , Ak is said to be a partition. This means that exactly one of the events in

the partition occurs: one and only one. This is illustrated in the following diagram.
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A6
H

A5A4
A3A2

A1

ε

A partition of the event space and the
intersection of an event H with the partition.

The simplest version of a partition is any event A and its complement, since A ∩ A′ =∅
and A∪ A′ = E .

Note the event H represented on the diagram of the event space E above. It appears from

the diagram that the probability of H can be obtained by summing the probabilities of

the intersection of H with each event Ai in the partition. We can show this formally:

H = H ∩E

= H ∩ (A1 ∪ A2 ∪·· ·∪ Ak )

= (H ∩ A1)∪ (H ∩ A2)∪·· ·∪ (H ∩ Ak ).

Since A1, A2, . . . , Ak are mutually exclusive, it follows that the events

H ∩ A1, H ∩ A2, . . . , H ∩ Ak

are also mutually exclusive. Hence, by the third axiom of probability,

Pr(H) = Pr(H ∩ A1)+Pr(H ∩ A2)+·· ·+Pr(H ∩ Ak )

= Pr(A1)Pr(H |A1)+Pr(A2)Pr(H |A2)+·· ·+Pr(Ak )Pr(H |Ak )

=
k∑

i=1
Pr(Ai )Pr(H |Ai ).

This result is known as the law of total probability. Note that it does not matter if there

are some events A j in the partition for which H ∩A j =∅. (For example, see A1 and A6 in

the diagram above.) For these events, Pr(H ∩ A j ) = 0.

A table can provide a useful alternative way to represent the partition and the event H

shown in the diagram above. In the following table, the event A3 is used as an example.
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H H ′

A1 Pr(A1)

A2 Pr(A2)

A3 Pr(A3∩H) = Pr(A3)Pr(H |A3) Pr(A3)

A4 Pr(A4)

A5 Pr(A5)

A6 Pr(A6)

Pr(H) Pr(H ′)

Example: Traffic lights, continued

We have seen an illustration of the law of total probability, in the traffic-lights example

from the previous section. We obtained the probability of the rider meeting green at the

second set of traffic lights by using the possible events at the first set of traffic lights, G1

and R1. These two events are a partition: note that R1 =G ′
1. Hence,

Pr(G2) = Pr(G1 ∩G2)+Pr(R1 ∩G2)

= Pr(G1)Pr(G2|G1)+Pr(R1)Pr(G2|R1)

= (0.3×0.6)+ (0.7×0.4)

= 0.18+0.28

= 0.46.

In contexts with sequences of events, for which we use tree diagrams, we may be inter-

ested in the conditional probability of an event at the first stage, given what happened

at the second stage. This is a reversal of what seems to be the natural order, but it is

sometimes quite important. In the traffic-lights example, it would mean considering a

conditional probability such as Pr(G1|G2): the probability that the rider encounters green

at the first set of traffic lights, given that she encounters green at the second set.

Again, consider the general situation involving a partition A1, A2, . . . , Ak and an event H .

The law of total probability enables us to find Pr(H) from the probabilities Pr(Ai ) and

Pr(H |Ai ). However, we may be interested in Pr(Ai |H). This is found using the standard

rule for conditional probability:

Pr(Ai |H) = Pr(Ai ∩H)

Pr(H)
.
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We can use the multiplication theorem in the numerator and the law of total probability

in the denominator to obtain

Pr(Ai |H) = Pr(Ai )Pr(H |Ai )∑k
j=1 Pr(A j )Pr(H |A j )

.

This process involves a ‘reversal’ of the conditional probabilities.

It is most important to avoid confusion between the two possible conditional probabili-

ties: Are we thinking of Pr(C |D) or Pr(D|C )? The language of any conditional probability

statement must be examined closely to get this right.

These ideas are applied in diagnostic testing for diseases, as illustrated by the following

example.

Example: Diagnostic testing

Suppose that a diagnostic screening test for breast cancer is used in a population of

women in which 1% of women actually have breast cancer. Let C = “woman has breast

cancer”, so that Pr(C ) = 0.01. Suppose that the test finds that a woman has breast can-

cer, given that she actually does, in 85% of such cases. Let T+ = “test is positive, that is,

indicates cancer”; then Pr(T+|C ) = 0.85. This quantity is known in diagnostic testing as

the sensitivity of the test.

Suppose that when a woman actually does not have cancer, the test gives a negative

result (indicating no cancer) in 93% of such cases; that is, Pr(T−|C ′) = 0.93. This is called

the specificity of the test.

Clearly, we want both the sensitivity and the specificity to be as close as possible to 1.0.

But — particularly for relatively cheap screening tests — this cannot always be achieved.

(You may wonder how the sensitivity and specificity of such a diagnostic test can ever

be determined, or estimated. This is done by using definitive tests of the presence of

cancer, which may be much more invasive and costly than the non-definitive test under

scrutiny. The non-definitive test can be applied in a large group of women whose cancer

status is clear, one way or the other, to estimate the sensitivity and specificity.)

Before reading further, try to guess how likely it is that a woman (from this population)

who tests positive on this test actually has cancer?

People’s intuition on this question is often alarmingly awry. Notice that this is a question

of genuine interest and concern in practice: the screening program will need to follow

up with women who test positive, leading to more testing and also to obvious concern

on the part of these women.

This crucial clinical question is: What is Pr(C |T+)?
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This is a natural context for a tree diagram, which is shown below. This is because there

are two stages. The first stage concerns whether or not the woman has cancer, and the

second stage is the result of the test, positive (indicating cancer) or not. We find, for

example, that Pr(T+∩C ) = Pr(C )Pr(T+|C ) = 0.01×0.85 = 0.0085.

Pr(C) = 0.01

Pr(C’) = 0.99

Pr(T₋|C) = 0.15

Pr(T₋⋂C) = 0.0015

Pr(T₋⋂C’) = 0.9207

Pr(T₊|C’) = 0.07

Pr(T₋|C’) = 0.93

Pr(T₊⋂C) = 0.0085

Pr(T₊⋂C’) = 0.0693

Pr(T₊|C) = 0.85

Tree diagram for the diagnostic-testing example.

We can now apply the usual rule for conditional probability to find Pr(C |T+):

Pr(C |T+) = Pr(C ∩T+)

Pr(T+)
= 0.0085

Pr(T+)
.

To find Pr(T+), we use the law of total probability:

Pr(T+) = Pr(C ∩T+)+Pr(C ′∩T+)

= Pr(C )Pr(T+|C )+Pr(C ′)Pr(T+|C ′)

= (0.01×0.85)+ (0.99×0.07)

= 0.0085+0.0693

= 0.0778.

Hence

Pr(C |T+) = Pr(C ∩T+)

Pr(T+)
= 0.0085

0.0778
≈ 0.1093.
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Note what this implies: Among women with positive tests (indicating cancer), about 11%

actually do have cancer. This is known as the positive predictive value. Many people are

surprised by how low this probability is. Women who actually do have cancer and test

positive are known as true positives. In this example, the overwhelming majority (about

89%) of women with a positive test do not have cancer; women who do not have cancer

but who test positive are known as false positives.

The information in the tree diagram can also be represented in a table, as follows.

T+ T−

C Pr(C ∩T+) = 0.0085 Pr(C ∩T−) = 0.0015 Pr(C ) = 0.01

C ′ Pr(C ′∩T+) = 0.0693 Pr(C ′∩T−) = 0.9207 Pr(C ′) = 0.99

Pr(T+) = 0.0778 Pr(T−) = 0.9222

Exercise 13

Consider the diagnostic-testing example above.

a Find Pr(C ′|T−). This quantity is known as the negative predictive value: it concerns

true negatives, that is, women who do not have cancer and who have a negative test.

b For Pr(C ) = 0.01 and Pr(T−|C ′) = 0.93, as in the example, what is the largest possible

value for the positive predictive value Pr(C |T+)?

c For Pr(C ) = 0.01 and Pr(T+|C ) = 0.85, as in the example, what value of the specificity

Pr(T−|C ′) gives a positive predictive value Pr(C |T+) of:

i 0.20 ii 0.50 iii 0.80 iv 0.99?

d Breast cancer is many times rarer in men than in women. Suppose that a population

of men are tested with the same test, and that the same sensitivity and specificity

apply (so Pr(T+|C ) = 0.85 and Pr(T−|C ′) = 0.93), but that in men Pr(C ) = 0.0001. Find

Pr(C |T+) and Pr(C ′|T−).
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Answers to exercises

Exercise 1

a A, C , D and E are all events, because they each consist of a collection of possible

outcomes. B is not an event for this random procedure, because if we only know the

outcome of the roll of the dice, we do not know whether or not B has occurred.

b A = {(1,1), (1,2), (2,1), (1,4), (4,1), (2,3), (3,2),

(1,6), (6,1), (2,5), (5,2), (3,4), (4,3), (5,6), (6,5)}.

c |D| = 11.

d A∩E =∅, the empty set. None of the possible outcomes is in both A and E : there is

only one outcome in E , and it is clearly not in A (since 6+6 = 12, which is not prime).

Exercise 2

For this random procedure, each possible outcome consists of an ordered sequence of

31 numbers, such as (0.1,1.2,0.7,3.4, . . . ). The first number is the rainfall on 1 August,

the second is the rainfall on 2 August, and so on. There are infinitely many possible

outcomes, in principle. Cases like this are not at all unusual. Any time we take a sequence

of measurements of a quantity of interest, we have a random procedure of this type.

a i We know which dates are Mondays in August 2017. So, if we have observed an

outcome, we can determine whether or not A has occurred. Thus A is an event.

ii Although B seems related to rainfall, it is not an event for this random proce-

dure. For any given outcome, we cannot say for sure whether B has occurred.

iii The outcomes in C are those sequences for which the sum of the 31 numbers

(the daily rainfall amounts) is greater than 20.0. Thus C is an event.

b The pairs of mutually exclusive events are: A and F ; E and F .

c i A′ = “there is a rainfall amount greater than zero recorded on at least one day

that is not a Monday”.

ii A∩E = “either no rainfall is recorded for the whole month, or else the only day

with a rainfall amount greater than zero is the last Monday of the month”.

iii A ∪C is a complicated event to put in words: the best way of describing it is

to say that either A occurs, or C occurs, or both. An example of an outcome

that is not in A ∪C is rainfall of 0.1 mm every day; for such an outcome there

is non-zero rainfall on days other than Mondays (so A does not occur) and the

total rainfall for the month is 3.1 mm (so C does not occur). Since neither A nor

C occurs, the union A∪C does not occur for this outcome.
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Exercise 3

This problem requires you to recognise that, in a four-child family, the event “at least one

girl” is the complement of “all boys”. Let A = “all four children are boys”. Then A′ = “there

is at least one girl”. Since Pr(A) = 0.07, it follows by property 4 that Pr(A′) = 1−0.07 = 0.93.

Exercise 4

a Using the specified assumption of random mixing, we get Pr(A) = Pr(B) = 1
16 .

b The child’s wishes will be satisfied if at least one of the two purchases is a Pirate

Captain; this event is A∪B . By the addition theorem (property 5), we have

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B)

= 1

16
+ 1

16
− 1

256
= 31

256
≈ 0.121,

using part (a) and the specified assumption that Pr(A∩B) = 1
256 .

c i B ′ = “a figure other than a Pirate Captain is purchased at the second shop”

ii A′∪B ′ = “either the first purchase is not a Pirate Captain, or the second pur-

chase is not a Pirate Captain, or both”

iii A ∩B ′ = “the first purchase is a Pirate Captain, and the second purchase is not

a Pirate Captain”

iv A′∩B ′ = “neither purchase is a Pirate Captain”

d In part (b), we found that Pr(A ∪B) = 31
256 ≈ 0.121. Note that A′∩B ′ = (A ∪B)′. This

is an important general result: The complement of the union is the intersection of the

complements. By an application of property 4 to this result, we find that

Pr(A′∩B ′) = 1−Pr(A∪B) = 1− 31

256
= 225

256
≈ 0.879.

So not purchasing a Pirate Captain is the more probable event.

Exercise 5

This question reminds us that we are often using an idealised model in probability, in

which random mixing is assumed. Whether the mixing is sufficiently random for this

assumption to be reasonably satisfied is party a matter of physics (more specifically, the

concrete physical processes involved in the mixing). But in practice it usually boils down

to an assumption, informed by consideration of the procedure involved.

a A normal flip with many spins is likely to be random, if executed by a person with

no particular skill. However, it is (apparently) possible to learn how to flip a coin to

produce the desired result. In those cases the mixing is not random at all.

b For reasons associated with exercise 6, a flip that lands on the floor may show a bias

towards heads or tails, depending on the specific coin. This does not mean the mix-

ing is not random, but it demonstrates the subtleties of randomising devices.
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c With a sufficiently vigorous and lengthy shake, the mixing is random, leading to no

preference for any outcome, assuming a symmetric die.

d An overhand shuffle needs to be done for a very long time to produce randomness

in the order of the pack, relative to the starting order. If the shuffle is done just a few

times, traces of the original order will persist.

e A riffle shuffle produces a random order much more effectively than an overhand

shuffle.

f It seems clear that this blast of air produces such chaotic and extensive mixing of the

balls that, assuming the balls are of uniform size, shape and weight, all outcomes will

be (close to) equally likely.

g Historically, random number generators have been of varying quality; it depends on

the method used. Most computer games now use algorithms that will not produce

detectable non-randomness.

h A simple physical device like this may well have inadequate mixing.

Exercise 6

What you get depends on the specific coin. Were you surprised by your results?

Exercise 7

There are indeed five possibilities for the number of aces in the hand. But these different

possibilities are not equally likely. A standard deck has 52 cards. There are thousands

of equiprobable distinct hands of four cards that can be dealt: 270 725, to be precise.

Only one of these possible hands contains all 4 aces, whereas there are many hands that

contain no aces. So the chance of four aces is 1
270 725 , while the probability of a hand with

no aces is much greater.

Exercise 8

There is some simple reasoning to be applied here. Consider the ballot for the first half

of the year, in which 29 February could be selected. In most years, no men born on

29 February could be recruited, even if that marble came up, since their birth year was

not a leap year (for example, in 1965 the birth year was 1945). In years such as 1968,

the men turning 20 were born in the leap year of 1948, and some would have been born

on 29 February. For those men born on 29 February 1948, their chances of conscription

were the same as other men born in the first half of 1948.

In fact, there were only two relevant leap years, 1948 and 1952, involving conscription in

the years 1968 and 1972. The date 29 February came up in the selected marbles in 1972

and not in 1968.
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Exercise 9

These answers are discussed further in the section Independence.

a Two lottery draws are usually regarded as mathematically independent because of

their physical independence. In principle, there are issues to be considered here.

Does the outcome depend at all on the initial position of the balls? If so, could this

in any way be related to the position they finished after last week’s draw?

b A and B are dependent, because they are mutually exclusive. Any mutually exclusive

events are not independent.

c A and B are not likely to be independent, given the seasonal cycle of weather in most

places, as discussed after the exercise.

d A and B are independent if the toss is truly random.

Exercise 10

To answer this exercise it is important to recognise that the independence of the experi-

ments means that their outcomes are independent.

a Y can take the values 2,3,4,5,6,7; U can take the values 2,3,4, . . . ,12; V can take the

values 1,2,3,4,5,6.

b By careful consideration of the outcomes, and the use of independence, we find that

Pr(U > Y ) = 160
216 and Pr(U < Y ) = 35

216 . So it is much more likely that the sum U will be

greater than X +1, rather than the other way around. Note also that Pr(U = Y ) = 21
216 .

c Pr(V > Y ) = 90
216 and Pr(V < Y ) = 91

216 . (Very close!) Hence Pr(V > Y ) < Pr(V < Y ).

Note also that Pr(V = Y ) = 35
216 .

Exercise 11

a i Assuming independence, we can calculate the probability of two non-sightings

as 0.3×0.3 = 0.09.

ii 0.37 ≈ 0.0002.

b i If all components have to fail for the machine to fail, the probability of failure

of the machine is obtained by multiplying the individual failure probabilities,

so the probability equals 0.1×0.01×0.01×0.005 = 5×10−8. (Very small indeed.)

ii The probability of at least one component failing is one minus the probability

that none fails. Assuming independence, the chance that none fails is equal to

0.9×0.99×0.99×0.995 ≈ 0.8777. Hence the probability of failure of the machine

is approximately 1−0.8777 = 0.1223. (Much higher.)

c Independence seems doubtful here; the six people could all be delayed by a common

causative event, such as inclement weather. Assuming independence, the chance of

the building being opened on time is 1− (0.05×0.1×0.2×0.25×0.5×0.9) ≈ 0.9999.
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d This assessment entails the multiplication of probabilities, which assumes indepen-

dence. It seems plausible that circumstances that precipitate a loss-of-coolant acci-

dent might also predispose towards the failure of safety functions: for example, an

earthquake or human sabotage.

Exercise 12

a The player loses at the first roll if 1, 4 or 6 is obtained. The probability of this occur-

ring is 0.5.

b To win $6, the player needs to be paid $10. This only occurs if the first roll is 5 and

the second roll is 5; the probability of this is 1
36 .

c The probability of winning is obtained by adding up the probabilities of outcomes

for which the payout is greater than $4. There are eight such outcomes: (2,3), (2,5),

(3,2), (3,3), (3,5), (5,2), (5,3) and (5,5), each with probability equal to 1
36 . So the

probability of winning equals 8
36 = 2

9 .

Exercise 13

a Pr(C ′|T−) ≈ 0.9984. So, if the test is negative, there is a very high probability that the

woman does not have breast cancer.

b The positive predictive value is calculated as follows:

Pr(C |T+) = Pr(C )Pr(T+|C )

Pr(C )Pr(T+|C )+Pr(C ′)Pr(T+|C ′)

= 0.01×Pr(T+|C )

0.01×Pr(T+|C )+0.99×0.07
.

This is maximised when the sensitivity Pr(T+|C ) is 1. For Pr(T+|C ) = 1, the positive

predictive value is Pr(C |T+) ≈ 0.1261, which is still quite small.

c Some algebra shows that, for Pr(C ) = 0.01 and Pr(T+|C ) = 0.85:

i Pr(C |T+) = 0.20 requires Pr(T−|C ′) ≈ 0.9657

ii Pr(C |T+) = 0.50 requires Pr(T−|C ′) ≈ 0.9914

iii Pr(C |T+) = 0.80 requires Pr(T−|C ′) ≈ 0.9979

iv Pr(C |T+) = 0.99 requires Pr(T−|C ′) ≈ 0.9999.

The specificity values required to achieve high positive predictive values are very

close to 1.

d The positive predictive value is Pr(C |T+) ≈ 0.0012 and the negative predictive value

is Pr(C ′|T−) ≈ 0.99998.
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