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Inference for
proportions

Assumed knowledge

The content of the modules:

• Discrete probability distributions

• Binomial distribution

• Exponential and normal distributions

• Random sampling.

Motivation

• Why can we rely on random samples to provide information about the proportion of

a population with a particular characteristic?

• Should we worry that different random samples taken from the same population will

give different results?

• How variable are the results obtained from different random samples?

• How can we quantify the uncertainty (imprecision) in the results from a sample?

The module Random sampling introduces sampling from a binomial distribution. Un-

derlying the binomial distribution are Bernoulli trials and Bernoulli random variables.

A Bernoulli random variable is a discrete random variable that takes the value 1 with

probability p and the value 0 with probability 1− p. If we have a random sample of n

observations on a Bernoulli random variable, then the sum of the observations X has a

binomial distribution with parameters n and p. A random sample of n Bernoulli obser-

vations thus gives a single observation from the Bi(n, p) distribution.

The binomial distribution allows us to model sampling from an essentially infinite pop-

ulation of units in which a proportion p of the units have a particular characteristic. If

we choose a unit at random from this population, the probability that it has the charac-

teristic is equal to p, and the probability that it does not have the characteristic is equal

to 1− p. If we choose n units at random, the number X with the characteristic has a

binomial distribution: X
d= Bi(n, p).
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In practice, we usually do not know the value of the population proportion p, and we are

interested in obtaining an estimate of p. A single observation x of X can be used to pro-

vide a point estimate of the unknown population proportion p: the sample proportion x
n

is an estimate of the population proportion p. There will be some imprecision associated

with a single point estimate, and we would like to quantify this sensibly.

In this module, we discuss the distribution of observations from a binomial distribution

to illustrate how it serves as a basis for using a sample proportion to estimate an un-

known population proportion p. By considering the approximate distribution of sample

proportions, we can provide a quantification of the uncertainty in an estimate of the

population proportion. This is a confidence interval for the unknown population pro-

portion p.

This provides methods for answering questions like:

• What is our best estimate of the proportion of Australians who plan to vote for Labor

in the next federal election?

• What is the uncertainty in this estimate of the proportion of Australians who plan to

vote for Labor in the next federal election?

• What is our best estimate of the proportion of physically inactive Australian adults?

• What is the uncertainty in this estimate of the proportion of physically inactive Aus-

tralian adults?

Content

Using probability theory to make an inference

The module Binomial distribution introduces the concept of a binomial random vari-

able. Recall that, if a random variable X has a binomial distribution with parameters n

and p, we write X
d= Bi(n, p). A binomial random variable can always be thought of as

the number of successes in n independent Bernoulli trials, each with probability of suc-

cess p. For this reason, the binomial distribution is often assumed to be an appropriate

model when we count the number of units with a characteristic of interest in a random

sample of size n, taken from a population in which the proportion of units with the char-

acteristic is p.

In the module Binomial distribution, the value of p is generally assumed to be known.

However, in many realistic and relevant research contexts, the value of p is not known,

but we are very interested in its value, because it relates to a research question of some

importance.
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We have often appealed to an argument based on symmetry and appropriate random

mixing (such as shaking a die in a cup) to justify particular numerical choices for proba-

bilities: for example, that the chance of rolling a four using a fair die is 1
6 .

But knowing probabilities, or even having a basis for assuming particular values, is not

a common scenario. The opposite is the case. We are often confronted with a situation

where we believe that a binomial model is appropriate and we know the size n of the

random sample of units, but we do not know p. And we would like to know it.

One of the main reasons for studying probability distributions, such as the binomial,

is that this theory is the foundation for making inferences about unknown population

characteristics, such as p. In general terms, this is known as statistical inference.

Here are two quite different contexts with the same underlying binomial structure, where

it is clear that p is unknown:

1 A random sample of voters is asked about their current political preference. We are

interested in using the sample to draw an inference about the proportion of the pop-

ulation of voters who currently prefer Labor.

2 Consider a standard drawing pin with a circular, slightly rounded head. If this drawing

pin is tossed (in a similar way to a normal coin toss) and allowed to land on a flat

surface, there are two ways it can finish:

• leaning on the point of the pin (as shown on the left in figure 1)

• lying flat with the pin pointing straight up (as shown on the right).

What is the chance that it finishes with the pin pointing straight up?

Figure 1: The two ways a drawing pin can finish after being tossed like a coin.

It is part of the power of probability models, and their application in statistics, that such

diverse problems as these two can be dealt with in the same way.

In this module, we use the binomial structure to think about the following specific in-

ferential problem: If we have an observation from a binomial random variable with

known n but unknown p, how can we make an inference about p?
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The sample proportion as an estimator of p

Even without using any ideas from probability or distribution theory, it seems com-

pelling that the sample proportion should tell us something about the population pro-

portion. If we have a random sample from the population, the sample is representative of

the population in an ‘expected’ sense. So we should be able to use the sample proportion

as an estimate of the population proportion.

Assume that X
d= Bi(n, p). We define the sample proportion to be P̂ = X

n
. It is a suitable

name, because P̂ reflects the proportion in the sample with the characteristic of interest.

Once we obtain an actual observation x of the random variable X , we have an actual

observation p̂ = x

n
of the sample proportion.

As there is a distinction to be made between the random variable P̂ and its corresponding

observed value p̂, we refer to the random variable as the estimator P̂ , and the observed

value as the estimate p̂; note the use of upper and lower case.

More specifically, the observed value p̂ is referred to as a point estimate of p.

Example: Survey of voters

Suppose we obtain a random sample of 500 voters, and we find that 227 prefer Labor.

The observed sample proportion preferring Labor is 227
500 = 0.454, and we say that 0.454 is

a point estimate of the unknown population proportion preferring Labor.

In this example:

• p is the proportion of all Australian voters who prefer Labor

• n = 500 is the sample size

• the random variable X is the number of voters who prefer Labor in a random sample

of 500 voters

• the random variable P̂ = X
500 is the proportion of voters who prefer Labor in a random

sample of 500 voters

• x = 227 is an observation of X

• p̂ = 227
500 = 0.454 is the corresponding observation of P̂ .

In the previous example, we would be very lucky if the true population proportion turned

out to be 0.454. It is much more probable that this value is different from the true pop-

ulation proportion, because samples vary. After all, even when we know the population

proportion p, we do not (and should not!) expect the sample proportion to be exactly

equal to p. For example, if we toss a fair coin 30 times, then obtaining exactly 15 heads is

not guaranteed at all, even if it is one of the more likely outcomes.
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This discussion is reminding us that the sample proportion P̂ is actually a random vari-

able; it varies from one sample to the next. In the next section, we explore this important

fact in some detail.

The sample proportion as a random variable

The module Random sampling includes the example of making observations on the

Bi(10,0.5) distribution. This example is motivated by supposing that, in the population

of voters, 50% prefer the Labor party, and then looking at what happens for many small

samples of 10 voters.

If we count the number of Labor voters in one sample of 10 voters, we have an obser-

vation from the binomial distribution with parameters n = 10 and p = 0.5. If we do this

100 times, we have 100 observations from this binomial distribution. An example of 100

actual observations is shown in figure 2; the number of people preferring Labor is shown

as a horizontal bar. 

 
 
 
 
 
 
 
 
 
 

50 50 50 50 50 50 50 50 50 50

Number preferring Labor
Each pane l is based on ten voters.

Figure 2: 100 observations from the Bi(10,0.5) distribution.

In figure 3, the same 100 observations are represented, but the proportion preferring La-

bor is plotted, rather than the number. As each binomial observation is based on a ran-

dom sample of 10 voters, the top part of figure 3 is simply a re-scaling of figure 2 with the

number preferring Labor divided by 10 to provide the proportion.
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Figure 3: 100 proportions based on observations from the Bi(10,0.5) distribution.

The bottom part of figure 3 provides an alternative representation of the same 100 obser-

vations. Each observed proportion is plotted as a dot, and the dots are stacked up when

there are multiple observations of the same value.

For example, you can see that there is one dot at 0.1, and you should be able to find the

corresponding single sample with a proportion of 1
10 = 0.1 in the top part of figure 3.

Similarly, there are two dots at 1.0, corresponding to the two samples with a proportion

of 10
10 = 1.0 in the top part of figure 3.

Since the observations shown in figure 3 are taken from a binomial distribution with

p = 0.5, it is not surprising to find that the most frequently observed sample proportion

among the 100 cases is 0.5.

Figures 2 and 3 are based on observations from the binomial distribution with n = 10 and

p = 0.5. What about the distribution itself?

The top part of figure 4 shows this binomial distribution. Assuming that this is an ap-

propriate model for the number of people preferring Labor in a sample of 10 voters,

the probability of five people preferring Labor is about 0.25 (it is 0.2461 to four decimal

places). We can think of this as meaning that, in the long run, among many samples of

size 10, the proportion of samples in which five voters prefer Labor will be 24.61%.
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Figure 4: The Bi(10,0.5) distribution (top), and the distribution of sample proportions for
observations from the Bi(10,0.5) distribution (bottom).

The top part of figure 4 corresponds closely to the bottom part; the latter shows the true

distribution of sample proportions, each based on an observation from the Bi(10,0.5)

distribution. The distribution in the bottom part is the same shape as the Bi(10,0.5) dis-

tribution in the top part; it is not the Bi(10,0.5) distribution because it has a different

scale on the horizontal axis — the scale based on proportions.
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Think about the distribution shown in the bottom part of figure 4 some more. It tells

us about the true pattern of repeated sample proportions based on observations from

Bi(10,0.5). About one quarter of the sample proportions will be ‘right on the money’:

they will be exactly equal to the true population proportion, p = 0.5. If the sample pro-

portion is not exactly 0.5, it is quite likely that it is close to 0.5: the next most likely sample

proportions are 0.4 and 0.6 (equally likely).

It is unlikely that the sample proportion will be a long way from the true proportion. The

worst possible outcomes (furthest from the population proportion p = 0.5) are sample

proportions of 0
10 = 0 or 10

10 = 1. They have a very small probability of occurring. Each of

the outcomes 0 and 1 has probability equal to 0.0010. They are not going to occur very

often, in the long run. And after all, when we looked at 100 sample proportions, none of

them was equal to 0, and only two of them were equal to 1 (figure 3).

All of this shows us that the sample proportion P̂ = X
n is itself a random variable. In a

sense, this is obvious, since it follows directly from its definition: it is a simple function of

the binomial random variable X . So P̂ has a distribution. It has a mean and a variance:

what are they?

Mean and variance of the sample proportion

We will use the following general result about the mean and variance of a linear transfor-

mation of a random variable.

If X is a discrete random variable and Y = aX +b, then

• E(Y ) = a E(X )+b

• var(Y ) = a2 var(X )

• sd(Y ) = |a|sd(X ).

The first part is proved in the module Discrete probability distributions. The second part

can be proved using a similar approach, and then the third part follows.

Now assume that X
d= Bi(n, p). From the module Binomial distribution, we know that

E(X ) = np and var(X ) = np(1−p). It follows that

E(P̂ ) = E
( X

n

)
= 1

n
E(X ) = 1

n
×np = p.

So the distribution of the sample proportion P̂ is centred around p. For statistical in-

ference, this is highly desirable. It means that in the long run, on average, the sample

proportion will neither over-estimate nor under-estimate the true value of p. Of course,

a specific estimate will be out by a bit; but in the long run, the estimates average out to

the true proportion p.
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What about the variance? Using the general result above:

var(P̂ ) = var
( X

n

)
=

( 1

n

)2
var(X )

= 1

n2 np(1−p)

= p(1−p)

n
.

It follows that the standard deviation of P̂ is given by

sd(P̂ ) =
√

p(1−p)

n
.

The presence of n in the denominator of the variance of the sample proportion P̂ is very

important. It means that, for larger samples, the spread of the distribution of P̂ will be

smaller. This is a good thing: Since the distribution is centred on p, the smaller the vari-

ance, the more likely it is that sample proportions will be close to p. We explore this

further in the section More on the distribution of sample proportions.

In summary, for population proportion p and sample size n, the mean, variance and

standard deviation of the sample proportion P̂ are as follows:

E(P̂ ) = p

var(P̂ ) = p(1−p)

n

sd(P̂ ) =
√

p(1−p)

n
.

To illustrate these results, we look at what happens in our voting-preference example

when we increase the sample size from 10 voters to 100 voters.

Figure 5 shows the distribution of sample proportions based on observations from the

Bi(n,0.5) distribution for n = 10 and for n = 100. When n = 100, there are 101 possible

values for the proportion of people voting Labor.

Notice what has changed between n = 10 and n = 100, and also what has not changed.

What has not changed is that the distribution of the sample proportion P̂ is still cen-

tred around the population proportion p = 0.5. This is true for any value of n. What

has changed is that, for n = 100, the distribution is much more narrowly concentrated

around the mean p = 0.5. When n = 100, it is more likely that a sample proportion will

be close to p = 0.5, compared to when n = 10.
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Figure 5: True distributions of sample proportions for observations from the Bi(10,0.5)

distribution (left) and the Bi(100,0.5) distribution (right).

We have discussed the sample proportion P̂ as providing a point estimate of p. We now

develop this idea further, moving towards making a detailed inference about p: finding

an interval which we are ‘confident’ contains p.

Population parameters and sample estimates

In the module Random sampling, the distinction between a population and a sample

is described. Over the previous sections, we have considered taking samples of size n

from a population in which the true proportion of people preferring Labor is 0.5. In

considering this example, and others from probability, it is common to see the following

reaction: ‘But how do you know that the true proportion preferring Labor is 0.5?’

In many examples in the module Probability, there were assumptions made about spe-

cific probabilities, and the implications were explored. This is important, because we do

need to understand the rules of probability and the nature of random variables and dis-

tributions. One of the main reasons for understanding this theoretical material is that it

is the foundation for making inferences in real-life situations that we care about, such as

‘What is the true proportion preferring Labor?’ and ‘How precise is our estimate?’
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The actual proportion of people in the population preferring Labor is an example of a

population parameter. It is important to make the distinction between this population

parameter and a sample estimate. In practice (unlike in our voting-preference example),

we are interested in finding out about an unknown population parameter; this is a pro-

portion of the population, and has a fixed value. We collect data from a random sample

in order to obtain a sample estimate of the population parameter. As we have seen, dif-

ferent samples from the same population do not all give the same estimate: rather, they

will vary.

The unknown population parameter, the true proportion, is p. An estimate we obtain

from a single sample, the observed sample proportion, is the point estimate p̂. The aim

of the methods we describe later in this module is to infer something about the param-

eter of a population from the sample. This is an inference because there is uncertainty

about the parameter. We can, however, quantify this uncertainty.

The uncertainty involved in using sample proportions to estimate population propor-

tions can be understood by considering the distribution of sample proportions when we

sample repeatedly from the same population. Here we think of the sample proportion

as a random variable. It varies from sample to sample and has a distribution. By un-

derstanding the distributional properties of the sample proportion P̂ as an estimator of

the population proportion, we can quantify the uncertainty in a sample estimate of a

population parameter.

More on the distribution of sample proportions

As in the previous sections, we are assuming that X
d= Bi(n, p). We have seen that the

sample proportion P̂ = X
n is a random variable, and so has a distribution. We found that

E(P̂ ) = p

var(P̂ ) = p(1−p)

n

sd(P̂ ) =
√

p(1−p)

n
.

The fact that var(P̂ ) = p(1−p)

n
illustrates that, for a given value of n, the distribution of

sample proportions will be more spread out when p is close to 0.5, and less spread out

when p is close to 0 or 1. For example:

• if p = 0.5 and n = 10, then P̂ has variance 0.025 and standard deviation 0.1581

• if p = 0.1 and n = 10, or if p = 0.9 and n = 10, then P̂ has variance 0.009 and standard

deviation 0.0949.
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Exercise 1

The following table gives the standard deviation of P̂ for various values of p and n. Com-

plete the table by calculating the missing standard deviations, to two decimal places.

Standard deviation of P̂

n p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

10 0.09 0.16 0.09

50

100

The dependence of the spread of the distribution of sample proportions on the true pro-

portion p is illustrated in figure 6, where we consider the distribution of P̂ = X
40 , the pro-

portion of successes from samples of size 40. Figure 6 also shows that the distribution of

sample proportions is more symmetric for values of p closer to 0.5.
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Figure 6: True distributions of sample proportions P̂ for observations from the Bi(40, p)

distribution, for various values of p.
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Figure 7 shows six distributions of sample proportions based on varying sample size n,

but the same population parameter p = 0.9. As we saw in figure 5, as the sample size

increases, there are more possible values for the sample proportion. Two other features

of figure 7 are important. As we would expect, the spread of the distributions decreases

as the sample size increases. Additionally, the symmetry of the distributions increases

with sample size.
1 

 

 

 

 

 

 

 

 

 

0.4

0.3

0.2

0.1

0.0
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0.4

0.3

0.2

0.1

0.0
10.80.6 10.80.6

n = 10

Proportion of successes

Probability
n = 20 n = 30

n = 50 n = 75 n = 100

Proportions are based on Bi (n, 0.9)

Figure 7: True distributions of sample proportions P̂ for observations from the Bi(n,0.9)

distribution, for various values of n.

The distribution of sample proportions for large sample sizes

What does the distribution of the sample proportion look like when the sample size is

large? As we have seen in figure 7, even when p is as large as 0.9, if the sample size n is

large, the distribution of P̂ looks quite symmetric: Look at the three distributions in the

second row, for n = 50, n = 75 and n = 100.

In figure 8, a sample size of n = 100 has been used throughout. With this large sample

size, the distributions across the range of true proportions from 0.1 to 0.9 are quite sym-

metric, and clearly much more symmetric than the examples we have seen in previous

figures when n is not large. With the large number of possibilities for the sample propor-

tion (101 different values), the distributions are reminiscent of a continuous distribution.

The shape of each distribution is symmetric, and like a Normal distribution. Of course,

the distribution cannot actually be a Normal distribution, because the Normal distribu-

tion is continuous, and the distribution of sample proportions is discrete. But visually

it appears that a Normal distribution would be quite a good approximation. This visual

impression is correct, as we now demonstrate.
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Figure 8: True distributions of sample proportions P̂ for observations from the Bi(100, p)

distribution, for various values of p.
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Figure 9: Normal distributions with means and standard deviations corresponding to those
of the distributions of sample proportions in figure 8.
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The nine Normal distributions shown in figure 9 have means and standard deviations

corresponding to those of the distributions of sample proportions in figure 8. For exam-

ple, the top-left panel in figure 8 shows the distribution of P̂ for n = 100 and p = 0.1, so

E(P̂ ) = p = 0.1 and sd(P̂ ) =
√

p(1−p)
n = 0.03. Hence, the top-left Normal distribution in

figure 9 has mean µ= 0.1 and standard deviation σ= 0.03.

These two figures illustrate how the distribution of sample proportions can be approxi-

mated by a Normal distribution for large sample sizes.

Figure 10 shows the distribution of sample proportions based on n = 1000 and p = 0.5.

Here we see an even closer approximation to ‘continuity’ and a Normal distribution.

Again, the distribution cannot actually be Normal, because the proportions can only

take discrete values. But consider how close together the discrete values now are, when

n is so large. The gaps between the spikes (representing the probabilities) are only 0.001

apart, because the proportions can take values such as 0.500,0.501,0.502, . . . . So the ap-

pearance of a Normal distribution is stronger than any of the examples we have seen for

smaller sample sizes. 

 

 

0.600.550.500.450.40
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0.020

0.015

0.010

0.005

0.000
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Figure 10: Distribution of the sample proportion P̂ from the Bi(1000,0.5) distribution.

The Normal approximation described here is used later, when we obtain an approximate

confidence interval for the unknown p, based on an observation from the binomial dis-

tribution Bi(n, p), for large n. Before getting to the practicalities, however, we consider

some very important general ideas about confidence intervals.
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Confidence intervals

This section deals with fundamental aspects of confidence intervals. In the next section,

we will deal with obtaining a confidence interval for the specific case we are considering.

But it is important first to understand confidence intervals conceptually.

An observed sample proportion p̂ is a single point or value that provides us with an es-

timate of the true proportion of interest in the population. For this reason, it is called a

point estimate. In some sense, we are not interested in the particular value of the sample

proportion per se, but rather we are interested in the information it provides us about the

population. It provides an estimate of the population parameter of interest; in this case,

the population proportion p.

While the proportion from the sample will provide us with the best estimate of the popu-

lation proportion, it is unlikely that the sample value will be exactly equal to the param-

eter being estimated. Hence, the sample estimate is most useful if it is combined with

some information about its precision.

Suppose, for example, we want to estimate p, the proportion of Australian adults aged

18–24 who feel that it is acceptable for a breakup to be conveyed via email, phone or text

message (for brevity, we refer to this as an ‘impersonal’ breakup), and that we have the

results of two different surveys on hand, each of them based on random samples. The

first survey provides an estimate of the proportion equal to 0.17 (17%), while the second

survey provides the estimate 0.28 (28%). These estimates may seem inconsistent, and

it may be unclear which we might prefer to rely on. However, if the first survey result is

likely to be within ±0.07 of the true value of p, and the second survey result is likely to be

within ±0.25 of the true value of p, then the first result is more precise than the second.

By describing the first survey result as 0.17±0.07, we are specifying an interval or range of

values (from 0.17−0.07 to 0.17+0.07) within which we have confidence that the true value

of p lies. The interval has a lower bound and an upper bound: 0.10 and 0.24, respectively.

This interval is an indicator of the precision of an estimate of the population proportion

and is called a confidence interval. Here the confidence interval is (0.10,0.24).

Although we are discussing the specific context of an inference on p, most of the ideas

discussed in this section apply to confidence intervals for any unknown population pa-

rameter.

‘Confidence’ has a particular meaning in this context, which we now describe.
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Confidence level

When working out a confidence interval, we must first decide on a ‘degree’ or ‘level’ of

confidence. This is quantified by the confidence level. We want to be very confident, so

it makes sense to have a high confidence level. In most applications, the confidence level

used is 95%. This is a very strong tradition. You may wonder: Why don’t we use 100%,

and work out a 100% confidence interval? This question is asked in exercise 3.

A confidence interval will always be obtained from a random variable, so the interval

itself can be thought of as a random interval. It varies from one sample to the next, just

as a random variable does.

The confidence level specifies the long-run percentage or proportion of confidence in-

tervals containing the true value of the parameter: in this context, p. Illustrating this

idea requires a simulation or a thought experiment. In practice, we typically do not have

a long run of repeated samples at all. We have a single sample of size n, and we calcu-

late p̂ and a single confidence interval to characterise the precision in the result. Any

actual interval either contains or does not contain the true value of the parameter p, al-

though we don’t know whether it does or not, because we don’t know the value of p. For

example, we don’t know whether the interval 0.10 to 0.24, for the proportion of Australian

adults aged 18–24 who feel that impersonal breakups are acceptable, contains the true

value p. The confidence level of 95% being used here does not mean that the chance of

this particular interval containing p is 95%.

To illustrate the meaning of the confidence level, think about the true proportion p of

Australian adults aged 18–24 who feel that impersonal breakups are acceptable. As we

observed, we don’t know the value of p; estimating p is what we are trying to do! Assume,

just for the purposes of this discussion, that p = 0.20 (20%). The first survey described

above is based on a random sample of 100 adults aged 18–24, and 17% indicated that

an impersonal breakup is acceptable. We can imagine repeating the process used in the

first survey many times, sampling different adults each time, while maintaining random

sampling and a sample size of n = 100. Each time we will observe a different sample

proportion.

Figure 11 shows 100 such surveys, with the first survey result closest to the horizontal

axis. For each survey, the estimate of the proportion of interest is plotted as a dot in the

centre of a line. The line shows the 95% confidence interval for the particular survey. For

the first survey, the line showing the 95% confidence interval is from 0.10 to 0.24.
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Figure 11: One hundred surveys, based on random samples of 100 adults aged 18–24,
estimating the proportion who regard impersonal breakups as acceptable, showing the point
estimate and the 95% confidence interval in each case.
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Figure 11 shows a darker vertical gridline, corresponding to the true value of p, namely

p = 0.20. Most of the confidence intervals are colored black, but a small number are red;

these are the confidence intervals that do not include the true value of 0.2. In total, three

of the one hundred intervals are red. There are two on the low side, where all values in

the interval are less than 0.2, and one on the high side, where the lower bound of the

interval is greater than 0.2. In this small simulation, 97% of the intervals include the true

value. We expect that 95% of the 95% confidence intervals will include the true value;

with much larger simulations, the percentage would be very close to 95%.

Thinking about this more formally, if we define CI0.95(P̂ ) to be the 95% confidence inter-

val that is based on the random variable P̂ , then we can write

Pr[p ∈ CI0.95(P̂ )] = 0.95.

We have expressed this in the specific context we are considering, but the point is gen-

eral: A 95% confidence interval (considered as a random interval) for an unknown pa-

rameter has a probability of 0.95 of containing the parameter.

Exercise 2

Suppose we have m independent 95% confidence intervals for an unknown parameter.

a Define Y to be the number of intervals that include the unknown parameter value.

What is the distribution of Y ? (Hint. Think of the m intervals as a sequence of

Bernoulli trials.)

b Hence, what is E(Y )?

c Now assume m = 100.

i Find the chance that exactly 95 of the intervals include the parameter, that is,

find Pr(Y = 95).

ii Find the chance that at least 95 of the intervals include the parameter.

Varying the confidence level

Figure 12 represents the same 100 surveys of 100 Australian adults aged 18–24. For each

survey, the estimate of the proportion of interest is plotted as a dot in the centre of a line

which this time shows the 50% confidence interval. The central dot is the point estimate.

Hence, because they are the same surveys, the central dots in figure 12 are at the same

positions as those in figure 11.

However, the confidence intervals are much narrower. As before, the confidence inter-

vals shown in black contain the true value of the parameter, namely p = 0.2, and those

shown in red do not. The 50% confidence intervals are narrow and therefore may appear

precise. But figure 12 indicates that this is at a price. About half of them do not include

the true value of interest.
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Estimated proportion who accept impersonal breakup (with 50% confidence interval)

Figure 12: One hundred surveys, based on random samples of 100 adults aged 18–24,
estimating the proportion who regard impersonal breakups as acceptable, showing the point
estimate and the 50% confidence interval in each case.



{24} • Inference for proportions

Another way to see the effect of varying the confidence level is to examine confidence

intervals with different confidence levels for the same survey. This is shown in figure 13,

using the first survey of 100 Australian adults aged 18–24. The confidence intervals have

different confidence levels. Since the same survey is represented in each case, the point

estimate is the same, but the confidence intervals have different widths.
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Figure 13: Confidence intervals from the same data, but with different confidence levels.

Exercise 3

Consider the following figure, which shows the 50% and 95% confidence intervals for

the proportion of Australian adults aged 18–24 who feel that impersonal breakups are

acceptable, based on the first survey. Sketch the 100% confidence interval on the figure.
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50% confidence interval
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Sketch the 100% confidence interval around the point estimate:

Figure 14: Estimate of the proportion who regard impersonal breakups as acceptable from
one survey.

We have discussed the general properties of a confidence interval. We now turn to the

practical issue of obtaining a confidence interval for the unknown population propor-

tion p.
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Calculating confidence intervals

An approximate standard Normal distribution

We have seen how the distribution of sample proportions approximates a Normal dis-

tribution, for large n. The module Exponential and normal distributions shows how any

Normal distribution can be standardised, in the following way, to give a standard Normal

distribution:

If Y
d= N(µ,σ2) and Z = Y −µ

σ
, then Z

d= N(0,1).

The standard Normal distribution has mean 0 and variance 1. A random variable with

this distribution is usually denoted by Z . That is, Z
d= N(0,1).

Consider then a standardisation of P̂ . We know that E(P̂ ) = p and sd(P̂ ) =
√

p(1−p)
n , and

we know that P̂ is approximately Normally distributed if n is large. What is the distribu-

tion of the random variable

P̂ −p√
1
n p(1−p)

,

obtained by standardising P̂?

This is illustrated in stages by figures 15, 16 and 17. The distributions in the same position

represent the same values of p and n, as shown by the labelling of the panels.
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Figure 15: Distribution of P̂ , for various values of p and n.
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Figure 16: Distribution of P̂ −p, for various values of p and n.
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Figure 17: Distribution of the standardisation of P̂ , for various values of p and n.
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Figure 15 shows the distribution of the sample proportion P̂ in nine different cases, one

for each combination of p = 0.35,0.5,0.65 and n = 30,50,100.

Figure 16 shows the distribution of P̂ − p in each of the nine cases. Using the general

fact that E(aX +b) = a E(X )+b, we have E(P̂ −p) = p −p = 0. Further, the general result

var(aX +b) = a2 var(X ) tells us that transforming a random variable by adding a constant

leaves the variance unchanged. Hence, var(P̂ −p) = var(P̂ ) and so sd(P̂ −p) = sd(P̂ ).

So by subtracting the mean p from P̂ , we find that all the distributions are centred at 0,

but the spread of each distribution is the same as that of the corresponding distribution

in figure 15.

Figure 17 shows the distributions obtained when we complete the standardisation, by

dividing the random variable P̂ −p by its standard deviation. We are now looking at the

distribution of

P̂ −p√
1
n p(1−p)

.

Now all the distributions have the same centre and spread. More specifically,

E

(
P̂ −p√

1
n p(1−p)

)
= 0

sd

(
P̂ −p√

1
n p(1−p)

)
= 1.

Exercise 4

Confirm that

a E

(
P̂ −p√

1
n p(1−p)

)
= 0 b sd

(
P̂ −p√

1
n p(1−p)

)
= 1.

We know the mean and standard deviation of the standardised random variable, and it is

approximately Normally distributed. Putting all this together we can say that, for large n,

P̂ −p√
1
n p(1−p)

d≈ N(0,1).

That is, for large n, the distribution of the standardised random variable is approximately

the standard Normal distribution.

This standardisation proves crucial in obtaining a confidence interval for the unknown p,

when we have an observation from the binomial distribution Bi(n, p), as we now show.
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Calculating a 95% confidence interval with the Normal approximation

The crucial point to see in figure 17 is that all of the distributions are approximately the

same, regardless of the values of p and n. This is especially important, since we don’t

know the value of p; we are trying to estimate it.

As discussed in the module Exponential and normal distributions, for a Normal random

variable X
d= N(µ,σ2), about 95% of the distribution is within two standard deviations of

the mean. That is,

Pr(µ−2σ< X <µ+2σ) ≈ 0.95.

Hence, for a random variable with the standard Normal distribution, Z
d= N(0,1), we have

Pr(−2 < Z < 2) ≈ 0.95. To be more precise:

Pr(−1.96 < Z < 1.96) = 0.95.

This is illustrated in figure 18.

Figure 18: The standard Normal distribution, Z
d= N(0,1).

Figure 19 shows the distribution of the sample proportion P̂ for sample size n = 100 and

population proportion p = 0.5 (or, equivalently, for observations from the Bi(100,0.5)

distribution). The standard deviation of P̂ is shown in the figure. Only a small percentage

of the sample proportions are more than two standard deviations away from p = 0.5.

About 95% of the sample proportions are within two standard deviations of p.
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Figure 19: Distribution of the sample proportion based on n = 100 and p = 0.5.

Similarly, for each of the distributions of standardised sample proportions in figure 17,

about 95% of the distribution is within two standard deviations of the mean. Since each

of the standardised sample proportions has a distribution that can be approximated by

the standard Normal distribution, we can state that, for large n,

Pr

(
−1.96 < P̂ −p√

1
n p(1−p)

< 1.96

)
≈ 0.95.

We multiply through by
√

p(1−p)
n to obtain

Pr

(
−1.96

√
p(1−p)

n
< P̂ −p < 1.96

√
p(1−p)

n

)
≈ 0.95.

In other words, the distance between P̂ and p will be no more than 1.96
√

p(1−p)
n for 95%

of sample proportions.

One further rearrangement gives

Pr

(
P̂ −1.96

√
p(1−p)

n
< p < P̂ +1.96

√
p(1−p)

n

)
≈ 0.95.

It is really important to reflect on this probability statement. Note that it has p in the

centre of the inequalities. The population parameter p does not vary: it is fixed, but

unknown. The random element in this probability statement is the random interval

around p.
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This forms the basis for the approximate 95% confidence interval for the true propor-

tion p. In a given case, we have just a single observation from the Bi(n, p) distribution.

We then find the observed value p̂ of P̂ , and obtain the observed value of the random

interval, which we call the 95% confidence interval.

This gives us a 95% confidence interval for p:

(
p̂ −1.96

√
p(1−p)

n
, p̂ +1.96

√
p(1−p)

n

)
.

However, a problem remains. The unknown parameter is still present in the formula!

This seems unfortunate, to say the least; the very parameter we are seeking to estimate is

present in a formula that reflects the precision of our estimate.

The solution is to make a further approximation and substitute p̂ for p in the expression

for the standard deviation of P̂ .

Hence, an approximate 95% confidence interval for p is given by

(
p̂ −1.96

√
p̂(1− p̂)

n
, p̂ +1.96

√
p̂(1− p̂)

n

)
(∗)

or, equivalently,

p̂ ±1.96

√
p̂(1− p̂)

n
.

It is reasonable at this point to ask: How do we know that the Normal approximation

is adequate when we have substituted p̂ for p, as described? We provide an informal

answer to this sensible question in figure 20, by showing the distributions of

P̂ −p√
1
n P̂ (1− P̂ )

for the same values of p and n as in figure 17. Reassuringly, the two figures 17 and 20 are

almost indistinguishable. It is true that, for large n,

P̂ −p√
1
n P̂ (1− P̂ )

d≈ N(0,1).

This confirms that, for large n, the confidence interval (∗) derived above is a reasonable

approximation.



A guide for teachers – Years 11 and 12 • {31}

 

 

 

 

 
̂݌ െ ݌

ඥ̂݌ሺ1 െ ݊/ሻ̂݌
 

 

0.16

0.08

0.00

0.16

0.08

0.00

20‐2

0.16

0.08

0.00
20‐2 20‐2

p = 0.35, n = 30

Probability

p = 0.5, n = 30 p = 0.65, n = 30

p = 0.35, n = 50 p = 0.5, n = 50 p = 0.65, n = 50

p = 0.35, n = 100 p = 0.5, n = 100 p = 0.65, n = 100

Figure 20: Distribution of P̂−p√
1
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, for various values of p and n; compare with figure 17.

Keep in mind that the value of 1.96 in the calculation of the confidence interval comes

from the use of the standard Normal distribution, and corresponds to a central area

of 95%. This is the appropriate factor because the chosen level of confidence is 95%.

We have used the phrase ‘for large n’ frequently, and relied on visual impressions from

various distributions to get a sense of what may be adequately large for the approxima-

tion to be satisfactory in practice. In fact, the adequacy depends on both n and p. A

guideline often given is that:

If X
d= Bi(n, p) and the observation we are using for the approximate confi-

dence interval is x, then we require both x and n −x to be greater than 10.
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Example: Mobile-phone use among children

A recent large survey of a random sample of Australian children asked about mobile-

phone ownership in three age groups. The following table shows the number of mobile-

phone owners and the total number of children surveyed for each age group.

Mobile-phone ownership

Age group (years) Number of mobile owners Number surveyed

5–8 50 2150

9–11 544 2530

12–14 918 1250

Calculate an approximate 95% confidence interval for the true proportion of mobile-

phone owners in each group.

Solution

These data easily meet the guideline for the Normal approximation to be adequate.

In the 5–8 age group, we have p̂ = 50
2150 = 0.0233 and so

1.96

√
p̂(1− p̂)

n
= 1.96

√
0.0233(1−0.0233)

2150
= 0.00637.

Hence, the 95% confidence interval is 0.0233±0.00637, or (0.0169,0.0296). In percentage

terms, the confidence interval is 1.69% to 2.96%.

It is important to learn the real meaning of this confidence interval. As discussed in the

section Confidence intervals, we cannot really say that the chance that the unknown

percentage is between 1.69% and 2.96% is equal to 0.95. Once we have the data and the

actual calculated interval, there is no randomness involved: the unknown percentage is

a fixed number, not a random variable. Rather, we can say that we have calculated an

interval using a process that, in a long run of repeated instances of the study under the

same circumstances, would produce intervals that contained the unknown percentage

in 95% of cases, on average.

For the 9–11 age group, we have p̂ = 544
2530 = 0.215 and so

1.96

√
p̂(1− p̂)

n
= 1.96

√
0.215(1−0.215)

2530
= 0.0160.

Hence, the 95% confidence interval is 0.215 ± 0.0160, or (0.199,0.231). In percentage

terms, the confidence interval is 19.9% to 23.1%.
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For the 12–14 age group, we have p̂ = 918
1250 = 0.734 and so

1.96

√
p̂(1− p̂)

n
= 1.96

√
0.734(1−0.734)

1250
= 0.0245.

Hence, the 95% confidence interval is 0.734 ± 0.0245, or (0.710,0.759). In percentage

terms, the confidence interval is 71.0% to 75.9%.

Exercise 5

Casey buys a Venus chocolate bar every day for 180 days, during a promotion promising

that ‘one is six wrappers is a winner’. From these 180 purchases, Casey gets 20 winning

wrappers.

a What is the proportion of winning wrappers Casey expects to get, if the advertised

claim is true? How many winning wrappers would this imply, for Casey?

b What is the proportion of winning wrappers in Casey’s sample?

c Find an approximate 95% confidence interval for the true proportion of winning

wrappers, based on Casey’s sample of Venus bars.

d Casey feels he has missed out, and suspects that the true proportion of winners is

not one in six. Comment on this, based on Casey’s sample of Venus bars.

e What assumptions have been made about Casey’s sample of Venus bar wrappers?

More on calculating confidence intervals

Calculating a C % confidence interval with the Normal approximation

We have focussed so far on 95% confidence intervals, which is the confidence level that

is used most commonly. The general form of an approximate C % confidence interval for

a population proportion is

p̂ ± z

√
p̂(1− p̂)

n
,

where the value of z is appropriate for the confidence level. For a 95% confidence inter-

val, we use z = 1.96, while for a 90% confidence interval, for example, we use z = 1.64.

In general, for a C % confidence interval, we need to find the value of z that satisfies

Pr(−z < Z < z) = C

100
, where Z

d= N(0,1).

Figure 21 shows the required value of z as a function of the confidence level.
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Figure 21: The relationship between the confidence level and the value of z in the formula
for an approximate confidence interval.

The following figure is a repeat of figure 13. It shows confidence intervals based on the

same estimated proportion, but with different confidence levels. The larger confidence

levels lead to wider confidence intervals.
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Figure 22: Confidence intervals from the same data, but with different confidence levels.
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The distance from the sample estimate p̂ to the endpoints of the confidence interval is

E = z

√
p̂(1− p̂)

n
.

The quantity E is referred to as the margin of error. The margin of error is half the width

of the confidence interval. Sometimes confidence intervals are reported as p̂ ±E ; this

means the bounds of the interval are not directly stated, but must be calculated.

We have seen in figure 22 that the margin of error is larger when the confidence level is

larger. This is because the value of z from the standard Normal distribution will be larger

when the confidence level is larger.

Example: Mobile-phone use among children

Continuing with the mobile-phone example, consider the 12–14 age group. Calculate an

approximate 90% confidence interval for the true proportion of mobile-phone owners

in this group.

Solution

From the table in the initial mobile-phone example, we have p̂ = 918
1250 = 0.734. For a

90% confidence interval, we use z = 1.64, and so the margin of error is

1.64

√
0.734(1−0.734)

1250
= 0.0205.

Hence, the 90% confidence interval is 0.734 ± 0.0205, or (0.714,0.755). In percentage

terms, the confidence interval is 71.4% to 75.5%.

Exercise 6

Consider Casey’s sample of Venus bars from exercise 5. He obtained a random sample

of 180 wrappers, and found that 20 were winners. Rather than a 95% confidence interval

for the true proportion of winning wrappers, consider a 99% confidence interval.

a Without calculating the 99% confidence interval, guess the lower and upper bounds.

b Find the value of the factor z from the standard Normal distribution for a 99% con-

fidence interval (if necessary, by reading it off the graph in figure 21). Consider the

ratio of the values of z for the 99% and 95% confidence intervals, and estimate the

lower and upper bounds of the 99% confidence interval.

c Calculate the approximate 99% confidence interval for the true proportion of win-

ning wrappers, based on Casey’s sample of Venus bars.

d Consider Casey’s suspicion that the true proportion of winners is not one in six.

Comment on this, based on the 99% confidence interval.
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Maximum margin of error

In the module Binomial distribution, we noted that if X
d= Bi(n, p), then the variance is

largest (for a given value of n) when p = 1
2 , in which case var(X ) = n × 1

2 × 1
2 = n

4 .

This has the direct consequence that, when estimating p, the variance of P̂ is largest

when p = 0.5, and is equal to 0.25
n . This is perhaps slightly unfortunate for political polling

in particular, since such surveys are quite often estimating a characteristic (such as po-

litical preference) which is present in about half of the population.

However, there is some good news for the pollsters: While they may be in the realm of

least precise inferences, they know how bad it can get. For a random sample of size n,

the standard deviation of P̂ cannot be bigger than 0.5p
n

, and hence the margin of error for

a 95% confidence interval is at most 1.96 0.5p
n
= 0.98p

n
.

To make the reporting of such polls succinct, this fact is sometimes exploited. The report

simply uses the maximum margin of error for the given sample size n, knowing that this

is conservative: the precision will be as claimed if the estimated proportion p̂ is 0.5 (the

percentage is 50%), and better than claimed otherwise.

Exercise 7

A Nielsen Poll published on 17 February 2013 reported that, in a two-party vote, 56% of

voters prefer the Coalition (44% prefer ALP). The report indicates that the approximate

margin of error is at most 2.6%.

a Based on this margin of error, find the 95% confidence interval for the true propor-

tion of voters preferring the Coalition. (Assume the margin of error provided is for a

95% level of confidence.)

b Based on this margin of error, approximately how many voters were surveyed?

c Why might Nielsen provide a single (maximum) margin of error in reporting on a

variety of different outcomes (two-party-preferred vote, approval of the Prime Min-

ister, approval of the Opposition Leader)?

d The approval of the Prime Minister was reported to be 40%. Find a 95% confidence

interval for the true approval of the Prime Minister, based on the margin of error

provided. Will this confidence interval be conservative (wider than it should be) or

not (narrower than it should be)? Explain why.

When to use the Normal approximation

A guideline for when to use the Normal approximation for a confidence interval for p

was given in the previous section: both x and n − x should be greater than 10. These

conditions are generally met for the illustrative data in figure 23, based on n = 100.
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In contrast, the confidence intervals shown in figure 24 are based on data when n = 10;

in no case is both x and n − x greater than 10. In four of the ten cases presented, the

confidence intervals are nonsense: either the lower or the upper bound is outside the

range 0 to 1. Of course, proportions must be in the range 0 to 1. This shows that these

intervals are wrong, and it indicates that we should not trust the approximation when n

is this small.

 

 

 

 

 

 

 

 

 

1.00.80.60.40.20.0
Proportion of successes with approximate 95% confidence interval

Proportions are based on n = 100

Figure 23: Approximate 95% confidence intervals for various estimates p̂, with n = 100.
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Figure 24: Approximate 95% confidence intervals for various estimates p̂, with n = 10.
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You may wonder whether it is possible to find a confidence interval for p when n is small,

by avoiding the Normal approximation. The answer is that there is a method that uses

only the binomial distribution, and does not approximate. It is beyond the scope of the

curriculum.

Exercise 8

This exercise asks you to estimate π, using a statistical approach. Suppose you were

aware that the area of a circle is A = kr 2, where r is the radius of the circle and k is a

constant. Suppose you also knew that the equation for a circle centred at the origin is

x2 + y2 = r 2. So, you knew a lot about circles . . . but not the value of π.

a Consider the unit square in the real plane, with corners at (0,0), (0,1), (1,0) and (1,1),

and consider the circle of radius 1 centred at the origin. What proportion of the area

of the square is covered by the circle, in terms of k? Define this proportion to be p.

b Use the following approach to estimate p, and hence k.

i In an Excel spreadsheet, in columns A and B, store the variables x and y . In

each column, put 10 000 observations from the U(0,1) distribution. Recall that

this is achieved by entering =RAND() in the first cell, and then filling down the

column for 10 000 rows of data.

ii In column C, calculate x2 + y2.

iii In column D, evaluate whether or not x2 + y2 < 1, and store a ‘1’ when this

condition is satisfied, and a ‘0’ otherwise.

iv Use the 10 000 binary observations in column D to determine the proportion

of the randomly generated points that are inside the circle. A simple way to do

this is to average the values in column D. This is an estimate of p.

c Report the point estimate and approximate 95% confidence interval for p, based on

this sample of size n = 10 000.

d In fact, as you will realise, in estimating p you have estimated π
4 = 0.7854. How pre-

cise is your estimate? Does your 95% confidence interval include the true value?

e Based on your 95% confidence interval for p, what is your point estimate and ap-

proximate 95% confidence interval for k?
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Answers to exercises

Exercise 1

The following table gives sd(P̂ ) for various values of p and n, to two decimal places. Note

the symmetry in the table: sd(P̂ ) is the same for p = θ and p = 1−θ.

n p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

10 0.09 0.14 0.16 0.14 0.09

50 0.04 0.06 0.07 0.06 0.04

100 0.03 0.05 0.05 0.05 0.03

Exercise 2

a We can think of the m intervals as a sequence of m independent Bernoulli trials, with

each trial having probability of success p = 0.95. Then Y is the number of successes

in the m trials, where a success is counted whenever the confidence interval includes

the unknown parameter value. So Y has a binomial distribution with parameters

n = m and p = 0.95, that is, Y
d= Bi(m,0.95).

b E(Y ) = 0.95m.

c Now assume m = 100. Then Y
d= Bi(100,0.95).

i The chance that exactly 95 intervals include the parameter is Pr(Y = 95) = 0.18.

This can be obtained in Excel using =BINOM.DIST(95, 100, 0.95, FALSE).

ii The chance that at least 95 intervals include the parameter is Pr(Y ≥ 95) = 0.62.

This can be obtained in Excel by summing the probabilities for values of Y from

95 to 100. But there is also a more direct method. To obtain Pr(Y = y) in Excel,

we use FALSE as the fourth argument. If we use TRUE instead, the result is the

cumulative probability Pr(Y ≤ y). Note that Pr(Y ≥ 95) = 1−Pr(Y ≤ 94). We

can find Pr(Y ≤ 94) in Excel using =BINOM.DIST(94, 100, 0.95, TRUE). We

obtain Pr(Y ≥ 95) = 1−Pr(Y ≤ 94) = 1−0.384 = 0.62.

Exercise 3

A 100% confidence interval would mean that, in the long run, 100% of confidence inter-

vals would include the true parameter value. In the case of estimating a proportion, we

can be certain that the true proportion is between 0 and 1; hence, the 100% confidence

interval is (0,1). That is the only way we could guarantee that every single confidence

interval includes the true value. Of course, this is not a useful confidence interval in

any practical sense. This reminds us, however, why we choose a confidence level less

than 100%.
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Exercise 4

a We use the general result that E(aX +b) = a E(X )+b, for constants a and b. Note that

p and
√

p(1−p)
n are constants, and so

E

(
P̂ −p√

1
n p(1−p)

)
= E(P̂ −p)√

1
n p(1−p)

= E(P̂ )−p√
1
n p(1−p)

= p −p√
1
n p(1−p)

= 0.

b Using the general result var(aX +b) = a2 var(X ), we have

var

(
P̂ −p√

1
n p(1−p)

)
= var(P̂ −p)

1
n p(1−p)

= var(P̂ )
1
n p(1−p)

=
1
n p(1−p)
1
n p(1−p)

= 1.

The variance is 1, and so the standard deviation is 1.

Exercise 5

First we note that these data satisfy the guideline for the Normal approximation to be

adequate: x = 20 and n = 180, so both x and n −x are greater than 10.

a If the advertised claim is true, the proportion of winning wrappers Casey can expect

to get (in a long-run average) is 1
6 = 0.167. So the expected number of winning wrap-

pers in 180 purchases is 180
6 = 30.

b The proportion of winning wrappers in Casey’s sample is 20
180 = 1

9 = 0.111.

c We have p̂ = 1
9 = 0.111, so

1.96

√
p̂(1− p̂)

n
= 1.96

√
0.111(1−0.111)

180
= 0.0459.

Thus the approximate 95% confidence interval is 0.1111±0.0459, or (0.0652,0.1570).

In percentage terms, the confidence interval is 6.52% to 15.70%.

d The 95% confidence interval for the true proportion is (0.065,0.157); these are values

for the true proportion that are consistent with Casey’s observation of 20 winning

wrappers in a sample of 180 wrappers. The expected proportion of 0.167, according

to the advertised claim, is outside the confidence interval; it is greater than the upper

bound. Casey’s sample of Venus bars provides some basis for being suspicious.

e The method used for finding the confidence interval assumes that Casey’s sample of

Venus bar wrappers is a random sample from the population of Venus bars produced

for the promotion. Of course, if Casey buy Venus bars from shops with some old,

pre-promotion stock, he would not expect to get 1
6 winners. We assume that the

180 Bernoulli trials are independent; that is, Casey’s success (or failure) in finding

a winning wrapper on one day is not related to his success (or failure) on another

day. In assessing this assumption, we need to think about the distribution of winning
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wrappers and Casey’s buying patterns. For example: Are bars with winning wrappers

randomly mixed among all bars? Is there a limit on the number of winners per box?

Does Casey always buy from the same place?

Exercise 6

a The bounds of the 99% confidence interval will be further from the point estimate

than the bounds of the 95% confidence interval. Your estimate for the lower bound

of the 99% confidence interval should be less than 0.065, and your estimate for the

upper bound should be greater than 0.157.

b The value of the factor z from the standard Normal distribution for a 99% confidence

interval is 2.576. (Reading it from figure 21 gives 2.6.) The ratio of the values of z for

the 99% and 95% confidence intervals is 2.576
1.96 = 1.3. Hence, the margin of error for

the 99% confidence interval will be 1.3 times greater than the margin of error for the

95% confidence interval. It will be about 0.06, making the 99% confidence interval

about (0.05,0.17).

c We have p̂ = 1
9 = 0.111, so

2.576

√
p̂(1− p̂)

n
= 2.576

√
0.111(1−0.111)

180
= 0.0603.

Hence, the 99% confidence interval is 0.1111±0.0603, or (0.0508,0.1714). In percent-

age terms, the confidence interval is 5.08% to 17.14%.

d The 99% confidence interval includes the claimed true proportion of 16.7%.

Exercise 7

a Based on the margin of error provided, the approximate 95% confidence interval is

0.56±0.026, or (0.534, 0.586); in percentage terms, it is (53.4%,58.6%).

b For a 95% confidence interval, the margin of error is 1.96
√

p̂(1−p̂)
n . The maximum

margin of error occurs when p̂ = 0.5. We have

1.96

√
0.5(1−0.5)

n
= 0.026

=⇒
√

0.5×0.5

n
= 0.026

1.96

=⇒ 0.25

n
=

(0.026

1.96

)2

=⇒ n = 0.25
( 1.96

0.026

)2 = 1421 (to the nearest whole number).

Hence, the sample size is 1421.
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c Even if the sample size remains constant for the different outcomes that are reported,

the margin of error will vary because it depends on p̂. The reporting of the uncer-

tainty in the survey results is simplified by reporting the margin of error that is the

maximum for the sample size involved.

d Based on the margin of error provided, the approximate 95% confidence interval is

0.40±0.026, or (0.374,0.426). This confidence interval is conservative (wider than it

should be), because it is calculated using the maximum margin of error. The maxi-

mum margin of error arises when p̂ = 0.5, but in this case p̂ = 0.4. So the actual mar-

gin of error, based on the Normal approximation, is less than 0.026. Not by much,

however, as 1.96
√

0.4×0.6
1421 = 0.025.

Exercise 8

Since the circle has radius 1, it has area equal to k. As one quarter of the circle is in the

unit square, the proportion of the area of the square that is covered by the circle is equal

to p = k
4 .

Because you are simulating data, there is no unique answer. If you can set up the Excel

spreadsheet so it calculates everything (including the point estimate and approximate

95% confidence interval) based on formulas typed in cells, then hitting the F9 key will

produce a new simulation and a different confidence interval; you can use the F9 key

many times to see how often your confidence interval includes the true value.

The true value being estimated is π
4 = 0.7854. The following table gives the point esti-

mates and approximate 95% confidence intervals from five independent simulations.

Point estimate p̂ Approximate 95% CI

0.7843 (0.7762, 0.7924)

0.7898 (0.7818, 0.7978)

0.7847 (0.7766, 0.7928)

0.7928 (0.7849, 0.8007)

0.7847 (0.7766, 0.7928)

As it happens, these 95% confidence intervals all include the true value.

An inference for k
4 can be converted into an inference for k by multiplying through by 4.

For example, for the first result in the table, the point estimate for k is 4×0.7843 = 3.137,

and the approximate 95% confidence interval for k is (3.105,3.169).

This is a different method for approximating π from the one used by Archimedes . . .
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